Advertisement

9,10-Anthraquinone Dithiocarbamates as Potential Pharmaceutical Substances with Pleiotropic Actions: Computerized Prediction of Biological Activity and Experimental Validation

  • 16 Accesses

The pleiotropic pharmacological actions of 9,10-anthraquinone dithiocarbamates were studied. The Way2Drug web portal was used to establish that cytotoxic, antiviral, and anticonvulsant actions were predicted for the study molecules, along with moderate toxicity. In vitro experimental studies showed that all study compounds had cytotoxic effects on tumor cell lines Hep-2, CHO, HeLa, Raji, BL, and B95-8. The high levels of cytotoxicity against cell lines Raji and B95-8 seen with derivatives II, IV, VI, and X was evidence of direct actions on Epstein-Barr virus (EBV). Along with the cytotoxic action, dithiocarbamates V, VIII, and IX showed antiviral effects against herpes virus HSV-2. Compounds VI and X, which had cytotoxic and antiviral actions, produced anticonvulsant effects 3 and 6 h after administration, while dithiocarbamate III, which had cytotoxic activity, retained its antiviral effect 24 h after administration. Dithiocarbamates with pleiotropic actions were moderately toxic (LD50 > 1000 mg/ml, mice, p.o.). Interactions between the structures and the three types of biological activity studied experimentally were assessed.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. 1.

    V. T. DeVita, T. S. Lawrence, and S. A. Rosenberg, Cancer: Principles and Practice of Oncology, Wolters Kluwer Lippincott Williams & Wilkins, Philadelphia (2011).

  2. 2.

    P. De Paoli and A. Carbone, Int. J. Cancer, 133(7), 1517 – 1529 (2013).

  3. 3.

    J. L. Kutok and F. Wang, Annu. Rev Pathol., No. 1, 375 – 404 (2006).

  4. 4.

    J. Jalouli, M. M. Jalouli, D. Sapkota, et al., Anticancer Res., 32(2), 571 – 580 (2012).

  5. 5.

    C. P. Benit and CJ. Vecht, Neuro-Oncology Practice, 3, No. 4, 245 – 260 (2016).

  6. 6.

    H. Brotz-Oesterhelt and N. A. Brunner, Curr. Opin. Pharmacol., 8(5), 564 – 573 (2008).

  7. 7.

    A. L. Hopkins, G. R. Bickerton, I. M. Carruthers, et al., Cur. Top. Med. Chem., 11(10), 1292 – 1300 (2011).

  8. 8.

    J. U. Peters, J. Med. Chem., 56(22), 8955 – 8971 (2013).

  9. 9.

    G. Housman, S. Byler, S. Heerboth, et al., Cancers,6, 3, 1769 – 1792 (2014).

  10. 10.

    H. Zahreddine and K. L. Borden, Front. Pharmacol., 4, 28 (2013).

  11. 11.

    B. Deslouches and Y. P. Di, Oncotarget, 8(28), 46635 – 46651 (2017).

  12. 12.

    V. W. C. Soo, B. W. Kwan, H. Quezada, et al. Curr. Top. Med. Chem., 17(10), 1157 – 1176 (2017).

  13. 13.

    M. Micozzi, Fundamentals of Complementary, Alternative, and Integrative Medicine, Elsevier, Riverport Lane (2018).

  14. 14.

    A. Q. Acton, Anthraquinones — Advances in Research and Application, Scholarly Editions, Atlanta (2013).

  15. 15.

    V. I. Zvarich, M. V. Stasevich, O. V. Stan’ko, et al., Pharm. Chem. J., 48(9), 584 – 588 (2014).

  16. 16.

    M. Stasevych, V. Zvarych, V. Lunin, et al., Indian J. Pharm. Sci., 77(5), 634 – 637 (2015).

  17. 17.

    M. Stasevych, V. Zvarych, V. Lunin, et al., Monatsh. Chem., 149(6), 1111 – 1119 (2018).

  18. 18.

    E. M. Malik and C. E. Muller, Med. Res. Rev., 36(4), 705 – 748 (2016).

  19. 19.

    L. M. L. Nollet and J. A. Gutierrez-Uribe, Phenolic Compounds in Food. Characterization and Analysis, CRC Press, Boca Raton (2018).

  20. 20.

    A. S. Tikhomirov, A. A. Shtil, and A. E. Shchekotikhin, Recent Pat. Anti-Cancer Drug Discov., 13, 159 – 183 (2018).

  21. 21.

    Clarivate Analytics Integrity, 2018; http: //integrity.Thomson-Pharma.com (accessed June 23, 2018).

  22. 22.

    V. Zvarych, M. Stasevych, V. Lunin, et al., Monatsh. Chem., 147(12), 2093 – 2101 (2016).

  23. 23.

    T. I. Halenova, I. V. Nikolaeva, M. V. Stasevych, et al., Res. J. Pharm. Biol. Chem. Sci., 8, 1626 – 1632 (2017).

  24. 24.

    M. Stasevych, V. Zvarych, V. Lunin., et al., SAR QSAR Environ. Res., 28(5), 355 – 366 (2017).

  25. 25.

    D. S. Druzhilovskiy, A. V. Rudik, D. A. Filimonov, et al., Rus. Chem. Bull.,66(10), 1832 – 1841 (2017).

  26. 26.

    D. A. Filimonov, D. S. Druzhilovskiy, A. A. Lagunin, et al., Biomed. Chem. Res. Meth., 1, e00004 (2018).

  27. 27.

    A. A. Lagunin, V. I. Dubovskaja, A. V. Rudik, et al., PLOS One, 13, e0191838 (2018).

  28. 28.

    A. Lagunin, A. Zakharov, D. Filimonov, et al., Mol. Inf.,30(2 – 3), 241 – 250 (2011).

  29. 29.

    T. Mosmann, Immunol. J. Meth., 65(1 – 2), 55 – 63 (1983).

  30. 30.

    M. Ahmed, Pharmacol. Pharmacy, 6, 185 – 189 (2015).

  31. 31.

    J. Švarc-Gajiæ, General Toxicology, Nova Science Publishers Inc., New York (2010).

  32. 32.

    S. M. Ivanov, A. A. Lagunin D. A. Filimonov, et al., Pharm. Chem. J., 52(8), 758 – 762 (2018).

  33. 33.

    R. K. P. Tripathi and S. R. Ayyannan, Med. Chem. Res., 27(3), 709 – 725 (2018).

  34. 34.

    V. V. Knyazev, V. S. Rogovskii, E. D. Sveshnikova, et al., Pharm. Chem. J., 52(3), 205 – 208 (2018).

  35. 35.

    A. Lagunin, A. Stepanchikova, D. Filimonov, et al., Bioinformatics, 16(8), 747 – 748 (2000).

  36. 36.

    PASS Online, 2019; http: //www.way2drug.com/PASSOnline/index.php (accessed July 15, 2019).

  37. 37.

    K. Anusevicius, V. Mickevicius, M. Stasevych, et al., Res. Chem. Intermed.,41(10), 7517 – 7540 (2015).

  38. 38.

    M. V. Nesterkina and I. A. Kravchenko, Chem. Nat. Compd.,52(2), 237 – 239 (2016).

  39. 39.

    Clarivate Analytics Integrity (2019); https://integrity.clarivate.com/(accessed July 15, 2019).

  40. 40.

    Y. C. Martin, J. L. Kofron, and L. M. Traphagen, J. Med. Chem., 45(19), 4350 – 4358 (2002).

Download references

Author information

Correspondence to M. V. Stasevich.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 53, No. 11, pp. 25 – 33, November, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stasevich, M.V., Zvarich, V.I., Novikov, V.P. et al. 9,10-Anthraquinone Dithiocarbamates as Potential Pharmaceutical Substances with Pleiotropic Actions: Computerized Prediction of Biological Activity and Experimental Validation. Pharm Chem J (2020). https://doi.org/10.1007/s11094-020-02098-x

Download citation

Keywords

  • 9,10-anthraquinone dithiocarbamates
  • computer prediction
  • Way2Drug
  • cytotoxic activity
  • antiviral activity
  • anticonvulsant activity