Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 10, pp 813–819 | Cite as

An Effective and Convenient Process for the Preparation of Ticagrelor: Optimized by Response Surface Methodology and One-Pot Reaction

  • Li-hong Wang
  • Jun-hong Liu
MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • 16 Downloads

An effective and convenient process for the preparation of ticagrelor (1), an antiplatelet drug, has been developed. The synthesis of 1 is a four-step reaction. Each reaction step was optimized individually to develop a scalable and industrial friendly process. The critical step to prepare intermediate 5 was optimized using the response surface methodology. One-pot reaction was used to telescope the next three steps, resulting in 75% overall yield in comparison to the initial 63% yield obtained from the stepwise isolation process. The feasibility and consistency of the improved process was verified by pilot-scale test.

Keywords

ticagrelor synthesis process optimization response surface methodology one-pot reaction pilot-scale test 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21546004) and Major National Science and Technology Projects (Grant No. 2014ZX09102043-001).

References

  1. 1.
    G. B. Shinde, P. K. Mahale, S. A. Padaki, et al., SpringerPlus, 4(1), 493 – 504 (2015).CrossRefGoogle Scholar
  2. 2.
    K. A. Jacobson and J. M. Boeynaems, Drug Discov. Today, 15(13 – 14), 570 – 578 (2010).CrossRefGoogle Scholar
  3. 3.
    B. Springthorpe, A. Bailey, P. Barton, et al., Bioorg. Med. Chem. Lett., 17(21), 6013 – 6018 (2007).CrossRefGoogle Scholar
  4. 4.
    European Medicines Agency, Assessment Report for Brilique, www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm263964.htm (2011).
  5. 5.
    J. J. Van Giezen, L. Nilsson, P. Berntsson, et al., J. Thromb. Haemost, 7(9), 1556 – 1565 (2009).CrossRefGoogle Scholar
  6. 6.
    Haberfeld, H, ed. (2009). Austria-Codex (in German) (2009 /2010 ed.), Vienna: Österreichischer Apothekerverlag. ISBN 3-85200-196-X.Google Scholar
  7. 7.
    J. J. VanGiezen and R. G. Humphries, Semin. Thromb. Hemost, 31(2), 195 – 204 (2005).CrossRefGoogle Scholar
  8. 8.
    K. Huber, B. Hamad, and P. Kirkpatrick, Nat. Rev. Drug Discov, 10(4), 255 – 256 (2011).CrossRefGoogle Scholar
  9. 9.
    S. Husted, H. Emanuelsson, S. Heptinstall, et al., Eur. Heart J., 27(9), 1038 – 1047 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Husted and J. J. J. Giezen, Cardiovasc. J., 27(4), 259 – 274 (2009).Google Scholar
  11. 11.
    G. Simon, I. Anthony, and S. Brian, WO Pat. 9905143 (Feb. 4, 1999).Google Scholar
  12. 12.
    U. Larsson, M. Magnusson, T. Musil, et al., WO Pat. 01092263 (May. 31. 2001).Google Scholar
  13. 13.
    R. Aufednblatten, M. H. Bolhin, H. Hellström, et al., WO Pat. 10030224 (Mar. 18, 2010).Google Scholar
  14. 14.
    A. I. Khuri and J. A. Cornell, Response Surfaces: Design and Analyses, Marcel Dekker, New York (1987), pp. 214 – 273.Google Scholar
  15. 15.
    D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York (2001), pp. 656 – 698.Google Scholar
  16. 16.
    R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York (2009).Google Scholar
  17. 17.
    X. Q. He and J. G. Xu, J. Med. Chem., 25, 129 – 131 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical EngineeringQingdao University of Science & TechnologyQingdaoChina

Personalised recommendations