Advertisement

Stability Indicating RP-HPLC Method for Simultaneous Determination of Pholcodine and Guaiacol in Pharmaceutical Syrup

  • Fotouh R. MansourEmail author
  • Mostafa A. Khairy
Article
  • 10 Downloads

Guaiacol (GUA) and pholcodine (PHO) were simultaneously determined in a pharmaceutical syrup using RP-HPLC with UV detection. The separation was performed using X-Bridge C8 column (100 mm × 4.6 mm, 2.5 μm particle size) and a mobile phase of acetonitrile – phosphate buffer (pH 6.8; 50 mM) (25:75, v/v) at a flow rate of 0.55 mL/min. The column temperature was adjusted to 35°C, and the detector was set to measure the absorbance at 238 nm. The ICH guidelines were followed to validate the method. The linearity was studied over 6.0 – 70 μg/mL and 4 – 420 μg/mL ranges for GUA and PHO, respectively. Linear relationships were obtained over the specified concentration ranges with correlation coefficients of 0.9989 for GUA and 0.9999 for PHO. The limits of detection were also determined and found to be 2 μg/mL for GUA and 1.2 μg/mL for PHO. The proposed method was applied for the determination of both drugs in Coughpent syrup; the results comply with the label claim (0.1572g/120mL for PHO and 0.0237g/120mL for GUA).

Keywords

pholcodine guaiacol syrup HPLC, stability indicating method 

References

  1. 1.
    N. Sarma, G. Giancaspro, and J. Venema, Drug Test. Anal., 8, 418 – 423 (2016).CrossRefGoogle Scholar
  2. 2.
    C. M. Judkins, P. Teale, and D. J. Hall, Drug Test. Anal., 2, 417 – 420 (2010).CrossRefGoogle Scholar
  3. 3.
    I. A. Revelsky, E. S. Chernetsova, B. P. Luzyanin, et al, Drug Test. Anal., 2, 452 – 454 (2010).CrossRefGoogle Scholar
  4. 4.
    A. L. N. van Nuijs, A. Gheorghe, P. G. Jorens, et al, Drug Test. Anal., 6, 861 – 867 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Sundström, A. Pelander, K. Simojoki, and I. Ojanperä, Drug Test. Anal., 8, 39 – 45 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Maas, B. Madea, and C. Hess, Drug Test Anal, 1 – 18 (2017).Google Scholar
  7. 7.
    T. Launiainen, I. Nupponen, E. Halmesmäki, and I. Ojanperä, Drug Test. Anal., 5, 529 – 533 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Petkovska, H. Babunovska, and M. Stefova, Maced. J. Chem. Chem. Eng., 30, 139 – 150 (2011).Google Scholar
  9. 9.
    B. Shi and H. Min, Chinese Pharm. Aff., 4, 23 – 29 (2011).Google Scholar
  10. 10.
    X. Wang, L. Zhang, D. Byrne, L. et al, Org. Lett., 16, 4090 – 4093 (2014).CrossRefGoogle Scholar
  11. 11.
    A. A. Moustafa, M. A. Hegazy, D. Mohamed, and O. Ali, J. AOAC Int., (2017).Google Scholar
  12. 12.
    J. Acevska, A. Dimitrovska, G. Stefkov, et al, J. AOAC Int., 95, 399 – 405 (2012).CrossRefGoogle Scholar
  13. 13.
    A. A. Moustafa, H. Salem, M. Hegazy, and O. A. Mahmoud, J. Planar Chromatogr. – Mod. TLC, 28, 307 – 315 (2015).CrossRefGoogle Scholar
  14. 14.
    S. A. Mir, A. A. Ahangar, and A. S. Bhat, Int. J. PharmTech Res., 5, 341 – 348 (2013).Google Scholar
  15. 15.
    K. S. Bahçeci and J. Acar, Eur. Food Res. Technol., 225, 873 – 878 (2007).CrossRefGoogle Scholar
  16. 16.
    M. Hachiya, N. Asanome, T. Goto, and T. Noda, Japan Agric. Res. Q. JARQ, 43, 193 – 198 (2009).Google Scholar
  17. 17.
    Y. Hayasaka, G. A. Baldock, K. H. Pardon, et al, J. Agric. Food Chem., 58, 2076 – 2081 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Analytical Chemistry, Faculty of PharmacyTanta UniversityTantaEgypt
  2. 2.Pharmaceutical Service Center, Faculty of PharmacyTanta UniversityTantaEgypt
  3. 3.Research and Development, Glopal Napi Pharmaceuticals, 6th October CityGizaEgypt

Personalised recommendations