New Formulation Technique for Solubility and Dissolution Rate Enhancement of Poorly Soluble Drugs

  • Divya Harmalkar
  • Soraiya Godinho
  • Prashant Jivaji Bhide
  • Lalit Kumar
  • Rupesh Kalidas ShirodkarEmail author

Ebastine (EBS) is a second-generation non-sedating antihistamine used for the prevention and treatment of allergic rhinitis and chronic idiopathic urticaria. It is BCS class II drug exhibiting low aqueous solubility and poor oral bioavailability. The present work was aimed at enhancing the dissolution rate of EBS by formulating it in the form of a liquisolid (LS) system using Tween 20 (non-volatile solvent), Avicel PH 102 (carrier material) and Aerosil 200 (coating material). Various batches of LS powder system were formulated by adopting a mathematical model for calculating required quantities of excipients. The absence of interaction between drug and excipients was checked by Fourier transform IR spectroscopy and differential scanning calorimetry studies. Formulated EBS tablets were evaluated for post compression parameters. X-ray powder diffraction studies and scanning electron microscopy showed the loss of EBS crystallinity in LS formulations. Formulation F9 was considered as optimum, showing a higher drug release of up to 99.06% in comparison to marketed tablet formulations. Stability of the optimized formulation was confirmed by results of the accelerated aging study. Thus, it is concluded that LS formulation is a favorable method of EBS solubility enhancement.


antihistamines dissolution drug release ebastine liquisolid tablets 



The authors are grateful to Goa College of Pharmacy, Goa, for providing the necessary facilities to carry out this research work.


The authors declare that they have no any conflict of interest.


  1. 1.
    J. A. Ahmed, Int. J. Pharm. Pharm. Sci.,2, 1 – 7 (2015).Google Scholar
  2. 2.
    K. T. Savjani, A. K. Gajjar, and J. K. Savjani, Int. Schol. Res. Netw.,1, 1 – 10 (2012).Google Scholar
  3. 3.
    P. V. Cauwenberge, T. D. Belder, and L. Sys, Expert Opin. Pharmacother.,5, 1807 – 1813 (2004).Google Scholar
  4. 4.
    M. Dhall and A. K. Madan, J. Incl. Phenom. Macrocycl. Chem.,4, 35 – 45 (2017).Google Scholar
  5. 5.
    R. R. Kamisetti and V. R. Gupta, Int. J. Pharm. Sci. Nanotech.,10, 3779 – 3787 (2017).Google Scholar
  6. 6.
    P. R. Rao and G. C. Rao, Int. J. Res. Pharm. Sci.,4, 316 – 320 (2016).Google Scholar
  7. 7.
    A. Raj and S. Sreerekha, Innorig. Int. J. Sci.,16, 4 – 8 (2015).Google Scholar
  8. 8.
    M. Lu, H. Xing, J. Jiang, et al., Asian J. Pharm. Sci.,12, 115 – 123 (2017).Google Scholar
  9. 9.
    M. S. Dahivadkar, H. K. Jain, and K. N. Gujar, Int. Res. J. Pharm., 4, 201 – 204 (2013).CrossRefGoogle Scholar
  10. 10.
    J. J. Savsani, P. P. Goti, and P. B. Patel, Int. J. Chemtech. Res.,5, 47 – 55 (2013).Google Scholar
  11. 11.
    E. Pavani, S. Noman, and I. A. Syed, Drug Invent. Toda.,5, 302 – 310 (2013).Google Scholar
  12. 12.
    N. Chella, N. Shastri, and R. R. Tadikonda, Acta. Pharm. Sin. B,2, 502 – 508 (2012).Google Scholar
  13. 13.
    D. Walunj, Y. Sharma, S. Rawat, and K. Bhise, Int. J. Pharm. Bio. Sci.,3, 591 – 603 (2012).Google Scholar
  14. 14.
    A. S. Kulkarni, N. H. Aloorkar, M. S. Mane, and J. B. Gaja, Int. J. Pharm. Sci. Nanotech., 3, 795 – 802 (2010).Google Scholar
  15. 15.
    US Patent, No. 005800834A (1998).Google Scholar
  16. 16.
    F. J. Sayyad, S. L. Tulsankar, and U. B. Kolap, J. Pharm. Res.,7, 381 – 388 (2013).Google Scholar
  17. 17.
    Y. Javadzadeh, M. R. Siahi-Shadbad, M. Barzegar-Jalali, and A. Nokhodchi, Il Farm.,60, 361 – 365 (2005).Google Scholar
  18. 18.
    J. D. Pawar, R. S. Jagtap, R. C. Doijad, et al., J. Drug Deliv. Ther.,7, 6 – 11 (2017).Google Scholar
  19. 19.
    M. E. Aulton, Powder Flow, in: The Design and Manufacture of Medicines, Churchill Livingstone, Edinburgh (2013), pp. 187 – 199.Google Scholar
  20. 20.
    L. Lachman, H. A. Lieberman, and J. L. Kanig, in: The Theory and Practice of Industrial Pharmacy, K. E. Avis (Ed.), Varghese Publishing House, Bombay (1991), pp. 183 – 184.Google Scholar
  21. 21.
    J. D. Pawar, R. S. Jagtap, R. C. Doijad, et al., Asian J. Sci. Technol.,8, 5894 – 5899 (2017).Google Scholar
  22. 22.
    L. Lachman, H. A. Lieberman, and J. L. Kanig, Tablets, in: The Theory and Practice of Industrial Pharmacy, K. E. Avis (Ed.), Varghese Publishing House, Bombay (1991), pp. 296 – 302.Google Scholar
  23. 23.
    D. S. Patel, R. M. Pipaliya, and N. Surti, Indian J. Pharm. Sci., 77, 290 – 298 (2015).Google Scholar
  24. 24.
    B. Haritha, J. Formul. Sci. Bioavailab.,1, 1 – 5 (2017).Google Scholar
  25. 25.
    Japanese Pharmacopoeia, 16th Edition, Monograph of Ebastine, Pharmaceuticals and Medical Devices Agency (2011), pp. 763 – 764.Google Scholar
  26. 26.
    International Conference on Harmonization, ICH, Q1A (R2), IFPMA, Geneva (2005).Google Scholar
  27. 27.
    L. Kumar, M. S. Reddy, R. Verma, et al., Latin Am. J. Pharm.,35(2), 284 – 290 (2016).Google Scholar
  28. 28.
    N. S. K. Srinivas, R. Verma, G. P. Kulyadi, et al., Int. J. Nanomed., 12, 15 – 28 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Divya Harmalkar
    • 1
  • Soraiya Godinho
    • 1
  • Prashant Jivaji Bhide
    • 1
  • Lalit Kumar
    • 2
  • Rupesh Kalidas Shirodkar
    • 1
    Email author
  1. 1.Department of PharmaceuticsGoa College of PharmacyPanajiIndia
  2. 2.Department of PharmaceuticsManipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipalIndia

Personalised recommendations