Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 7, pp 593–597 | Cite as

3,5-Bis(2-Trifluomethoxybenzylidene)-4-Piperidone Induces Apoptosis in A549 Cells Through Reactive Oxygen Species-Mediated Pathways

  • Jie YangEmail author
  • Su-Su Meng
  • Yong-Jing Zhao
  • Guang-Yong Li
  • Ling-Yun Ge
  • Hua-Lei Zhang
  • Guo-Yun Liu
Article
  • 4 Downloads

Medicines with the F3C-O group can increase the lipophilicity of an aromatic ring system and protect it from oxidative attacks. We have synthesized 3,5-bis(2-trifluomethoxybenzylidene)-4-piperidone (4a), an EF24 analog with ortho trifluoromethoxy group, via aldol condensation reaction and evaluated its cytotoxicity by MTT assay. Owning to the ortho-trifluoromethoxy group, compound 4a exhibited excellent cytotoxicity against A549 cells. Mechanistic investigation indicated that 4a could induce oxidative stress, including the generation of reactive oxygen species (ROS), imbalance of redox buffering system, lipid peroxidation, and collapse of mitochondrial membrane potential, and finally leading to cell apoptosis. These data indicated that the introduction of the ortho-trifluoromethoxy group into curcumin analogs may be an effective strategy to enhance the anti-cancer ROS based activity.

Keywords

EF24 trifluoromethoxy group apoptosis reactive oxygen species 

Notes

Acknowledgments

This work was supported by the Doctoral Fund of LiaoCheng University (Grant No. 318051521, 318051424), the Open Project of Shandong Collaborative Innovation Center for Antibody Drugs (Grant No. CIC-AD1822, CIC-AD1824), and the Shandong Province Natural Science Foundation (Grant No. ZR2018LH022).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    G. Y. Zhou, Y. X. Yi, L. X. Jin, et al., Biomed. Pharmacother., 81, 318 – 328 (2016).CrossRefGoogle Scholar
  2. 2.
    H. Wang, T. O. Khor, L. M. Shu, et al., Anticancer Agent Med. Chem., 12, 1281 – 1305 (2012).CrossRefGoogle Scholar
  3. 3.
    S. Reuter, S. Eifes, M. Dicato, et al., Biochem. Pharmacol., 76, 1340 – 1351 (2008).CrossRefGoogle Scholar
  4. 4.
    P. Anand, A. B. Kunnumakkara, R. A. Newman, et al., Mol. Pharm., 4, 807 – 818 (2007).CrossRefGoogle Scholar
  5. 5.
    C. A. Mosley, D. C. Liotta, J. P. Snyder, Adv. Exp. Med. Biol., 595, 77 – 103 (2007).CrossRefGoogle Scholar
  6. 6.
    D. L. Yin, Y. J. Liang, T. S. Zheng, et al., Sci. Rep., 6, 32167 (2016).CrossRefGoogle Scholar
  7. 7.
    G. Y. Liu, C. C. Jia, P. R. Han, et al., Med. Chem. Res., 27, 128 – 136 (2018).CrossRefGoogle Scholar
  8. 8.
    Q. Chen, Y. Hou, G. G. Hou, et al., Res. Chem. Intermed., 42, 8119 – 8130 (2016).CrossRefGoogle Scholar
  9. 9.
    B. Jafari, M. Ospanow, S. A. Ejaz, et al., Eur. J. Med. Chem., 144, 116 – 127 (2018).CrossRefGoogle Scholar
  10. 10.
    T. Naret, J. Bignon, G. Bernadat, et al., Eur. J. Med. Chem., 144, 473 – 490 (2018).CrossRefGoogle Scholar
  11. 11.
    S. Purser, P. R. Moore, S. Swallow, et al., Chem. Soc. Rev., 37, 320 – 330 (2008).CrossRefGoogle Scholar
  12. 12.
    G. Landelle, E. Schmitt, A. Panossian, et al., J. Fluorine Chem., 203, 155 – 165 (2017).CrossRefGoogle Scholar
  13. 13.
    F. Leroux, Cheminform, 5, 644 – 649 (2004).Google Scholar
  14. 14.
    F. F. Gan, K. K. Kaminska, H. Yang, et al., Antioxid. Redox Signal., 19, 1149 – 1165 (2013).CrossRefGoogle Scholar
  15. 15.
    F. Dai, G. Y. Liu, Y. Li, et al., Free Radic. Biol. Med., 85, 127 – 137 (2015).CrossRefGoogle Scholar
  16. 16.
    G. Y. Liu, Q. Zhai, J. Z. Chen, et al., Eur. J. Pharmacol., 786, 161 – 168 (2016).CrossRefGoogle Scholar
  17. 17.
    P. Zou, Y. Q. Xia, W. Q. Chen, et al., Oncotarget, 7, 18050 – 18064 (2016).PubMedPubMedCentralGoogle Scholar
  18. 18.
    G. Y. Liu, Y. Z. Sun, N. Zhou, et al., Eur. J. Med. Chem., 112, 157 – 163 (2016).CrossRefGoogle Scholar
  19. 19.
    V. R. Yadav, A. Hussain, K. Sahoo, et al., J. Pharmacol. Exp. Ther., 351, 413 – 422 (2014).CrossRefGoogle Scholar
  20. 20.
    B. K. Adams, E. M. Ferstl, M. C. Davis, et al., Bioorg. Med. Chem., 12, 3871 – 3883 (2004).CrossRefGoogle Scholar
  21. 21.
    J. Z. Wu, S. B. Wu, L. Y. Shi, et al., Eur. J. Med. Chem., 125, 1321 – 1331 (2017).CrossRefGoogle Scholar
  22. 22.
    W. K. Hagmann, J. Med. Chem., 51, 4359 – 4369 (2008).CrossRefGoogle Scholar
  23. 23.
    K. K. Laali, W. J. Greves, S. J. Correa-Smits, et al., J. Fluorine Chem., 206, 82 – 98 (2018).CrossRefGoogle Scholar
  24. 24.
    H. L. Zhang, X. L. Ren, W. H. Yang, et al., Lat. Am. J. Pharm., 37, 958 – 963 (2018).Google Scholar
  25. 25.
    G. Y. Liu, Q. Zhang, Y. X. Xue, et al., Chin. J. Synth. Chem., 26, 354 – 359 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jie Yang
    • 1
    Email author
  • Su-Su Meng
    • 1
  • Yong-Jing Zhao
    • 1
  • Guang-Yong Li
    • 1
  • Ling-Yun Ge
    • 1
  • Hua-Lei Zhang
    • 1
  • Guo-Yun Liu
    • 1
  1. 1.School of PharmacyLiaocheng UniversityLiaochengChina

Personalised recommendations