Pharmaceutical Chemistry Journal

, Volume 53, Issue 6, pp 527–534 | Cite as

The Release of NSAIDs Such as Ibuprofen and Diclofenac from Magnetic Nanoparticles Coated with Dextran

  • Ewelina GronczewskaEmail author
  • Alicja Defort
  • Jacek. J. Kozioł

In this study, iron oxide (Fe3O4) nanoparticles were synthesized using the Massart co-precipitation method followed by surface coating with dextran. Next, coated magnetic nanoparticles (MNPs) were functionalized by diclofenac and dopamine attachment to the surface. The kinetics of release of these drugs was studied at various temperatures and pH of the medium. Concentrations of the released drugs were measured in vitro by spectrometric methods, and the mechanism of drug release from MNP carrier was analyzed in terms of the Korsmeyer – Peppas model. According to the results, the amount of released diclofenac and dopamine depended on the conditions, namely, temperature and pH of the medium. The values of the diffusion exponent n obtained for diclofenac suggest a Fickian diffusion mechanism, while the mechanism of dopamine diffusion was anomalous. These results were compared to those obtained previously for ibuprofen. The current results demonstrate differences in the mechanism of drug release under exposure to diverse environmental conditions.


magnetic nanoparticles (MNPs) drug release nonsteroidal anti-inflammatory drugs (NSAIDs), ibuprofen diclofenac dopamine Korsmeyer – Peppas model 


  1. 1.
    Y. Zhou, D. M. Boudreau, A. N. Freedman, et al., Pharmacoepidemiol. Drug Saf., 23, 43 – 50 (2014).Google Scholar
  2. 2.
    American College of Rheumatology ad hoc Group on Use of Selective and Nonselective NSAIDs, Arthritis Rheum.,59(8), 1058 – 1073 (2008).Google Scholar
  3. 3.
    M. J. Kuhar, P. R. Couceyro, and P. D. Lambert, in: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Lippincott-Raven, Philadelphia (1999).Google Scholar
  4. 4.
    K. Niemirowicz and H. Car, Chemik, 66(8), 868 – 881 (2012).Google Scholar
  5. 5.
    A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, Pharmacol. Rep.,64(5), 1020 – 1037 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Peng, Z. Fang, W. Yuan Peng, Chin. Chem. Let.,23(9), 1099 – 1102 (2012).Google Scholar
  7. 7.
    D. R. Kumar, S. Saurabh, Colloid. Surf. B: Biointerfaces, 97(1), 19 – 26 (2012).Google Scholar
  8. 8.
    J. L. Arias, M. López-Viota, J. López-Viota,, Int. J. Pharm.,382(1 – 2), 270 – 276 (2009).Google Scholar
  9. 9.
    A. van Walsem, S. Pandhi, R. M. Nixon, et. al., Arthritis Res. Therapy,17, 66 (2015).Google Scholar
  10. 10.
    B. S. Connolly and A. E. Lang, J. Am. Med. Assoc.,311(16), 1670 – 1683 (2014).Google Scholar
  11. 11.
    R. Massart, IEEE Trans. Magn.,17, 1247 – 1248 (1981).Google Scholar
  12. 12.
    P. L. Ritger and N. A. Peppas, J. Control. Release, 5, 37 – 42 (1987).Google Scholar
  13. 13.
    X. Huang and C. S. Brazel, J. Control. Release,73, 121 – 36 (2001).Google Scholar
  14. 14.
    X. Du, L. Li, J. Li,, Adv. Mater.,26(47), 8029 – 8033 (2014).Google Scholar
  15. 15.
    W. Sheng, B. Li, X. Wang,, Chem. Sci.,6, 2068 – 2073 (2015).Google Scholar
  16. 16.
    E. Gronczewska, A. Defort, and J. J. Kozioł, Pharm. Chem. J.,50(6), 491 – 499 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ewelina Gronczewska
    • 1
    Email author
  • Alicja Defort
    • 2
  • Jacek. J. Kozioł
    • 1
    • 2
  1. 1.Faculty of Biological SciencesUniversity of Zielona GóraZielona GóraPoland
  2. 2.Innovation Center – “Technologies for Human Health”Science and Technology Park of Zielona Góra University LtdZielona GóraPoland

Personalised recommendations