Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 5, pp 454–457 | Cite as

Influence of Lychnis chalcedonica L. Flavonoids on Transplanted Tumor Development and Cytostatic Therapy Effectiveness in Mice

  • E. N. Amosova
  • E. P. ZuevaEmail author
  • K. A. Lopatina
  • E. A. Safonova
  • T. G. Razina
  • O. Yu. Rybalkina
  • L. N. Zibareva
MEDICINAL PLANTS
  • 26 Downloads

A complex of biologically active compounds was isolated from Lychnis chalcedonica L. cultivated at the Siberian Botanical Garden at Tomsk State University. HPLC analysis found that the isolated compounds were flavonoids with retention times 10.40, 12.45, 13.29, and 15.47 min. The major flavonoid constituent was vicenin with tr = 13.29 min and a peak area of 87.4%. The flavonoid complex of L. chalcedonica was studied using three transplanted tumor models, i.e., Lewis lung carcinoma (LLC), melanoma B-16 (B-16), and lung cancer RL-67 (RL-67). Tests on C57BL/6 mice showed that the L. chalcedonica flavonoid complex inhibited development of melanoma B-16. Co-administration of L. chalcedonica flavonoids and cyclophosphamide enhanced the antitumor effect of the cytostatic in animals with B-16, RL-67, and LLC.

Keywords

Lychnis chalcedonica flavonoids transplanted tumors cytostatic therapy 

Notes

Acknowledgments

The work was performed in the framework of the Competitiveness Program of Tomsk State University.

References

  1. 1.
    P. B. Tsydendambaev, B. S. Khyshiktuev, and S. M. Nikolaev, Byull. VSNTs SO RAMN, 52(6), 229 – 233 (2006).Google Scholar
  2. 2.
    V. F. Korsun, V. M. Lakhtin, E. V. Korsun, and A. Mitskonas, “Phytolectins,” in: Practical Medicine [in Russian], Moscow, 2007.Google Scholar
  3. 3.
    Yu. S. Tarakhovskii, Yu. A. Kim, B. S. Abdrasilov, and E. N. Muzafarov, Flavonoids: Biochemistry, Biophysics, Medicine [in Russian], Synchrobook, Pushchino, 2013.Google Scholar
  4. 4.
    G. A. Belitskii, K. I. Kirsanov, E. A. Lesovaya, and M. G. Yakubovskaya, Usp. Mol. Onkol. 1(1), 56 – 68 (2014).Google Scholar
  5. 5.
    V. Yu. Bogachev, O. V. Golovanova, A. N. Kuznetsov, and A. O. Shekoyan, Angiol. Sosud. Khir., 19(1), 73 – 81 (2013).Google Scholar
  6. 6.
    V. Martino, Acta Farm. Bonaerense, 19(4), 303 – 308 (2000).Google Scholar
  7. 7.
    W. B. Grant, J. Nutr. Environ. Med., 12(3), 187 – 196 (2002).CrossRefGoogle Scholar
  8. 8.
    R. S. Rosenberg Zand, D. J. A. Jenkins, and E. P. Diamandis, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 777(1 – 2), 219 – 232 (2002).CrossRefGoogle Scholar
  9. 9.
    V. N. Zinov’eva and A. A. Spasov, Biomed. Khim., 58(2), 160 – 175 (2012).CrossRefGoogle Scholar
  10. 10.
    H. Wie, L. Tye, and E. Bresnick, Cancer Res., 50, No. 3, 499 – 502 (1990).Google Scholar
  11. 11.
    H. Huang and X. Zha, Chin. J. New Drugs Clin. Rem., 21, No. 7, 428 – 433 (2002).Google Scholar
  12. 12.
    M. H. Kim, J. Cell. Biochem., 89(3), 529 – 538 (2003).CrossRefGoogle Scholar
  13. 13.
    D. Bagchi, C. K. Sen, M. Bagchi, and M. Atalay, Biokhimiya, 69(1), 95 – 102 (2004).Google Scholar
  14. 14.
    L. N. Zibareva, Phytoecdysteroids of Plants of the Family Caryophyllaceae [in Russian], Lambert, Germany, 2012.Google Scholar
  15. 15.
    I. M. Smolyakova, S. N. Avdeenko, G. I. Kalinkina, et al., Khim. Rastit. Syr’ya, 3, 95 – 102 (2010).Google Scholar
  16. 16.
    O. A. Fedina, T. M. Plotnikova, and A. V. Yamkin, Critical Problems in Experimental and Clinical Pharmacology [in Russian], Tomsk, 2002, pp. 153 – 157.Google Scholar
  17. 17.
    M. B. Plotnikov, O. I. Aliev, A. S. Vasil’ev, et al., Byull. Eksp. Biol. Med., 139(1), 68 – 71 (2005).CrossRefGoogle Scholar
  18. 18.
    European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes, Council of Europe, Strasbourg, 1986.Google Scholar
  19. 19.
    Z. P. Sof’ina, A. B. Syrkin, A. Goldin, and A. Klein, Experimental Evaluation of Antitumor Drugs in the USSR and USA [in Russian], Meditsina, Moscow, 1980.Google Scholar
  20. 20.
    S. A. Arkhipov, V. M. Yunker, and E. V. Grunteko, Studies of Induction and Metastasis of Tumors in Experimental Animals [in Russian], Novosibirsk, 1984.Google Scholar
  21. 21.
    S. Glantz, Primer of Biostatistics, 4th Ed., McGraw-Hill Inc., New York, 1997, 473 pp.Google Scholar
  22. 22.
    V. I. Sergienko, I. B. Bondareva, and E. I. Maevskii, Handbook for Experimental (Preclinical) New Drug Studies [in Russian], Meditsina, Moscow, 2005.Google Scholar
  23. 23.
    A. M. Shcherbakov and O. E. Andreeva, Acta Nat., 7(3) (26), 149 – 155 (2015).Google Scholar
  24. 24.
    J. L. Johnson and E. G. Mejia, Mol. Nutr. Food Res., 57(12), 2112 – 2127 (2013).CrossRefGoogle Scholar
  25. 25.
    D. G. Zaridze, Carcinogenesis [in Russian], Meditsina, Moscow, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. N. Amosova
    • 1
  • E. P. Zueva
    • 1
    Email author
  • K. A. Lopatina
    • 1
    • 2
  • E. A. Safonova
    • 1
    • 2
  • T. G. Razina
    • 1
  • O. Yu. Rybalkina
    • 1
    • 2
  • L. N. Zibareva
    • 2
  1. 1.E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations