Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 5, pp 440–453 | Cite as

Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Emerging Lipid Based Drug Delivery Systems

  • Rupesh K. Shirodkar
  • Lalit Kumar
  • Srinivas Mutalik
  • Shaila LewisEmail author
Article
  • 16 Downloads

In the past decade, research in the area of nanodrug delivery has reached a new height with the advent of lipid based nanodrug delivery systems. Lipids being biocompatible and possessing diverse physicochemical properties have tremendous potential to enhance oral bioavailability of water insoluble drugs. Incorporation of a drug in lipid carriers is a smart approach to overcome problems related with conventional oral therapy. In recent years, two lipid based nanoparticles, namely solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are widely explored. SLN are spherical nanoparticles with a drug-containing solid lipid core stabilized with surfactants and formulated mainly to improve bioavailability of the drug molecules. Despite several advantages of SLNs, their major drawbacks include limited drug loading, drug leakage, and crystallization during storage. These drawbacks were avoided or reduced by the development of a new generation of lipid nanoparticles, the NLC, wherein a solid lipid is blended with liquid lipid. Modulation of drug release was added advantage with NLC formulations. The present review focuses on production techniques, characterization, release characteristics, stability, toxicity and potential applications of SLNs and NLCs.

Keywords

lipid based nanoparticles nanodrug delivery nanostructured lipid carriers solid lipid nanoparticles stability toxicity 

Notes

Acknowledgements

Authors are thankful to All-India Council for Technical Education, New Delhi, for financial support. Authors are grateful to Manipal Academy of Higher Education, Manipal, for providing necessary facilities.

Conflict of Interest

Authors hereby declare that, they do not have any conflict of interest.

References

  1. 1.
    S. Mukherjee, S. Ray, and R. S. Thakur, Indian J. Pharm. Sci., 71, 349 – 358 (2009).Google Scholar
  2. 2.
    R. H. Müller, K. Mäder, and S. Gohla, Eur. J. Pharm. Biopharm., 50, 161 – 177 (2000).Google Scholar
  3. 3.
    W. Mehnert and K. Mäder, Adv. Drug Deliv. Rev., 47, 165 – 196 (2001).Google Scholar
  4. 4.
    C. J. H. Porter and W. N. Charman, Adv. Drug Deliv. Rev., 50, 61 – 80 (2001).Google Scholar
  5. 5.
    R. Cavalli, M. R. Gasco, P. Chetoni, et al., Int. J. Pharm., 238, 241 – 245 (2002).Google Scholar
  6. 6.
    R. H. Müller,M. Radtke, and S. A. Wissing, Int. J. Pharm., 242, 121 – 128 (2002).Google Scholar
  7. 7.
    V. Jannin, J. Musakhanian, and D. Marchaud, Adv. Drug Deliv. Rev., 60(6), 734 – 746 (2008).Google Scholar
  8. 8.
    V. Patravale and P. Prabhu, in: Recent Trends in Novel Drug Delivery, N. Udupa and S. Mutalik (eds.), Prism Books Pvt. Ltd., Bengaluru (2014), pp. 81 – 167.Google Scholar
  9. 9.
    M. Üner and G. Yener, Int. J. Nanomedicine, 2(3), 289 – 300 (2007).Google Scholar
  10. 10.
    B. Siekmann and K. Westesen, Pharm. Pharmacol. Lett., 1, 123 – 126 (1992).Google Scholar
  11. 11.
    R. H. Müller and C. M. Keck, J. Biotech., 113(1 – 3), 151 – 170 (2004).Google Scholar
  12. 12.
    K. Manjunath and V. Venkateswarlu, J. Control. Release, 107, 215 – 228 (2005).Google Scholar
  13. 13.
    H. Weyhers, S. Ehlers, H. Hahn, et al., Pharmazie, 61(6), 539 – 544 (2006).Google Scholar
  14. 14.
    P. Severino, T. Andreani, A. S. Macedo, et al., J. Drug Deliv., 2012, 10 pages (2011).Google Scholar
  15. 15.
    K. Westesen, H. Bunjes, and M. H. J. Koch, J. Control. Release, 48(2 – 3), 223 – 236 (1997).Google Scholar
  16. 16.
    K. Westesen, B. Siekmann, and M. H. J. Koch, Int. J. Pharm., 93(1 – 3), 189 – 199 (1993).Google Scholar
  17. 17.
    H. Bunjes, K. Westesen, and M. H. J. Koch, Int. J. Pharm., 129(1 – 2), 159 – 173 (1996).Google Scholar
  18. 18.
    L. M. D. Gonçalves, F. Maestrelli, L. D. C. Mannelli, et al., Eur. J. Pharm. Biopharm., 102, 41 – 50 (2016).Google Scholar
  19. 19.
    L. Hu, Q. Xing, J. Meng, et al., AAPS PharmSciTech, 11(2), 582 – 587 (2010).Google Scholar
  20. 20.
    J. R. Madan, P. A. Khude, and K. Dua, Int. J. Pharm. Investig., 4(2), 60 – 64 (2014).Google Scholar
  21. 21.
    M. L. Bikkad, A. H. Nathani, S. K. Mandlik, et al., J. Liposome Res., 24(2), 113 – 123 (2014).Google Scholar
  22. 22.
    P. Chattopadhyay, B. Y. Shekunov, D. Yim, et al., Adv. Drug Deliv. Rev., 59(6), 444 – 453 (2007).Google Scholar
  23. 23.
    P. K. Gaur, S. Mishra, M. Bajpai, et al., Biomed. Res. Int., 2014, 9 (2014).Google Scholar
  24. 24.
    J. B. Prajapati, H. Katariya, and R. Patel, J. Drug Deliv. Sci. Technol., 43, 318 – 326 (2018).Google Scholar
  25. 25.
    V. Makwana, R. Jain, K. Patel, et al., Int. J. Pharm., 495(1), 439 – 446 (2015).Google Scholar
  26. 26.
    D. J. Jang, C. Moon, and E. Oh, Biomed. Pharmacother., 80, 162 – 172 (2016).Google Scholar
  27. 27.
    J. F. Fangueiro, E. Gonzalez-Mira, P. Martins-Lopes, et al., Pharm. Dev. Technol., 18(3), 545 – 549 (2013).Google Scholar
  28. 28.
    R. Parveen, F. J. Ahmad, Z. Iqbal, et al., Drug. Dev. Ind. Pharm., 40(9), 1206 – 1212 (2014).Google Scholar
  29. 29.
    P. Füredi, Z. E. Pápay, K. Kovács, et al., J. Pharm. Biomed. Anal., 132(5), 184 – 189 (2017).Google Scholar
  30. 30.
    M. Üner, S. A. Wissing, G. Yener, et al., Pharmazie, 59(4), 331 – 332 (2004).Google Scholar
  31. 31.
    V. Sandeep, D. Narendar, N. Arjun, et al., IJPSN, 9(6), 3524 – 3530 (2016).Google Scholar
  32. 32.
    S. Kumar, R. Narayan, V. Ahammed, et al., J. Drug Deliv. Sci. Technol., 44, 181 – 189 (2018).Google Scholar
  33. 33.
    J. Liu, W. Hu, H. Chen, et al., Int. J. Pharm., 328(2), 191 – 195 (2007).Google Scholar
  34. 34.
    S. M. Martins, B. Sarmento, C. Nunes, et al., Eur. J. Pharm. Biopharm., 85(3), 488 – 502 (2013).Google Scholar
  35. 35.
    J. S. Negi, P. Chattopadhyay, A. K. Sharma, et al., Eur. J. Pharm. Sci., 48, 231 – 239 (2013).Google Scholar
  36. 36.
    Y. C. Kuo and C. Y. S. Huang, J. Taiwan Inst. Chem. E., 45(4): 1154 – 1163 (2014).Google Scholar
  37. 37.
    H. F. Zhou, Q. H. Ma, Q. Xia, et al., Solid State Phenomena, 121 – 123, 271 – 274 (2007).Google Scholar
  38. 38.
    Y. C. Kuo, and S. J. Cheng, Int. J. Pharm., 499(1 – 2), 10 – 19 (2016).Google Scholar
  39. 39.
    R. Cavalli, O. Caputo, M. E. Carlotti, et al., Int. J. Pharm., 148, 47 – 54 (1997).Google Scholar
  40. 40.
    T. H. Tran, T. Ramasamy, H. J. Cho, et al., J. Nanosci. Nanotechnol., 14, 4820 – 4831 (2014).Google Scholar
  41. 41.
    T. H. Tran, J. Y. Choi, T. Ramasamy, et al., Carbohyd. Polym., 114, 407 – 415 (2014).Google Scholar
  42. 42.
    A. Narala and K. Veerabrahma, J. Pharm., 2013, 7 (2013).Google Scholar
  43. 43.
    R. B. Athawale, D. S. Jain, K. K. Singh, et al., Biomed. Pharmacother., 68(2), 231 – 240 (2014).Google Scholar
  44. 44.
    H. Wosicka-Fr1ckowiak, K. Cal, J. Stefanowska, et al., Int. J. Pharm., 495(2), 807 – 815 (2015).Google Scholar
  45. 45.
    J. Akbari, M. Saeedi, K. Morteza-Semnani, et al., Colloids Surf. B Biointerfaces, 145, 626 – 633 (2016).Google Scholar
  46. 46.
    I. Lacatusu, N. Badea, A. Murariu, et al., Soft Mater., 11(1), 75 – 84 (2013).Google Scholar
  47. 47.
    S. Barua, D. I. Lee, H. Kim, et al., Bull. Korean Chem. Soc., 39, 220 – 226 (2018).Google Scholar
  48. 48.
    P. Boonme, E. B. Souto, N. Wuttisantikul, et al., Eur J Lipid Sci Technol, 115(7), 820 – 824 (2013).Google Scholar
  49. 49.
    S. Morel, E. Terreno, E. Ugazio, et al., Eur. J. Pharm. Biopharm., 45, 157 – 163 (1998).Google Scholar
  50. 50.
    S. Bose and B. Michniak-Kohn, Eur. J. Pharm. Sci., 48(3), 442 – 452 (2013).Google Scholar
  51. 51.
    K. Manjunath, J. S. Reddy, and V. Venkateswarlu, Methods Find. Exp. Clin. Pharmacol., 27(2), 127 – 144 (2005).Google Scholar
  52. 52.
    V. Jenning and S. Gohla, Int. J. Pharm., 196, 219 – 222 (2000).Google Scholar
  53. 53.
    B. Siekmann and K. Westesen, Pharm. Pharmacol. Lett., 3, 194 – 197 (1994).Google Scholar
  54. 54.
    J. Kreuter, V. E. Petrov, D. A. Kharkevich, et al., J. Control. Release, 49(1), 81 – 87 (1997).Google Scholar
  55. 55.
    V. K. Venishetty, C. Durairaj, R. Sistla, et al., Int. J. Pharm., 335, 167 – 175 (2007).Google Scholar
  56. 56.
    M. Trotta, F. Debernardi, and O. Caputo, Int. J. Pharm., 257(1), 153 – 160 (2003).Google Scholar
  57. 57.
    R. Cavalli, O. Caputo, E. Marengo, et al., Pharmazie, 53(6), 392 – 396 (1998).Google Scholar
  58. 58.
    K. Westesen and B. Siekmann, Int. J. Pharm., 151(1), 35 – 45 (1997).Google Scholar
  59. 59.
    K. A. Shah, A. A. Date, M. D. Joshi, et al., Int. J. Pharm., 345(1), 163 – 171 (2007).Google Scholar
  60. 60.
    R. H. Müller and S. A. Runge, in: Submicron Emulsions in Drug Targeting and Delivery, S. Benita (ed.), Harwood Academic, Amsterdam (1998), pp. 219 – 234.Google Scholar
  61. 61.
    R. H. Müller, W. Mehnert, J. S. Lucks, et al., Eur. J. Pharm. Biopharm., 41 (1): 62 – 69 (1995).Google Scholar
  62. 62.
    A. Zur Mühlen and W. Mehnert, Pharmazie, 53(8), 552 – 555 (1998).Google Scholar
  63. 63.
    A. Zur Mühlen, E. Zur Mühlen, H. Niehus, et al., Pharmaceutical Research, 13(9), 1411 – 1416 (1996).Google Scholar
  64. 64.
    S. Jahnke, in: Emulsions and Nanosuspensions for the Formulation of Poorly Soluble Drugs, R. H. Müller, S. Benita, and B. H. L. Böhm (eds.), Medpharm Scientific Publishers, Stuttgart, (1998), pp. 177 – 200.Google Scholar
  65. 65.
    M. Üner, Pharmazie, 61(5), 375 – 386 (2006).Google Scholar
  66. 66.
    R. Lander, W. Manger, M. Scouloudis, et al., Biotechnol. Prog., 16(1), 80 – 85 (2000).Google Scholar
  67. 67.
    H. Bunjes, B. Siekmann, and K. Westesen, in: Submicron Emulsions in Drug Targeting and Delivery, S. Benita (ed.), Harwood Academic, Amsterdam (1998), pp. 175 – 204.Google Scholar
  68. 68.
    Eur. Patent No. 0167825 (1990).Google Scholar
  69. 69.
    United States Patent No. 188837(1993).Google Scholar
  70. 70.
    S. A. Wissing, O. Kayser, and R. H. Müller, Adv. Drug Deliv. Rev., 56(9), 1257 – 1272 (2004).Google Scholar
  71. 71.
    B. Sjöström and B. Bergenståhl, Int. J. Pharm., 88(1), 53 – 62 (1992).Google Scholar
  72. 72.
    B. Siekmann and K. Westesen, Eur. J. Pharm. Biopharm., 42(2), 104 – 109 (1996).Google Scholar
  73. 73.
    United States Patent No. 5250236 (1993).Google Scholar
  74. 74.
    M. R. Gasco, Pharm. Tech. Eur., 9, 52 – 58 (1997).Google Scholar
  75. 75.
    L. Boltri, T. Canal, P. A. Esposito, et al., Proct. Int. Symp. Control. Release Bioact. Mater., 20, 346 – 347 (1993).Google Scholar
  76. 76.
    A. De Labouret, O. Thioune, H. Fessi, et al., Drug Dev. Ind. Pharm., 21(2), 229 – 241 (1995).Google Scholar
  77. 77.
    M. R. Gasco, S. Morel, and R. Carpignano, Eur. J. Pharm. Biopharm., 38(1), 7 – 10 (1992).Google Scholar
  78. 78.
    R. Cavalli, E. Marengo, L. Rodriguez, et al., Eur. J. Pharm. Biopharm., 42(2), 110 – 115 (1996).Google Scholar
  79. 79.
    R. Cavalli, E. Peira, O. Caputo, et al., Int. J. Pharm., 182(1), 59 – 69 (1999).Google Scholar
  80. 80.
    M. Igartua, P. Saulnier, B. Heurtault, et al., Int. J. Pharm., 233(1), 149 – 157 (2002).Google Scholar
  81. 81.
    Y. J. Chen, R. X. Jin, Y. Q. Zhou, et al., Zhongguo Zhong Yao Za Zhi, 31(5), 376 – 379 (2006).Google Scholar
  82. 82.
    C. S. Kaiser, H. Römpp, and P. C. Schmidt, Pharmazie, 56(12), 907 – 926 (2001).Google Scholar
  83. 83.
    P. M. Gosselin, R. Thibert, M. Preda, et al., Int. J. Pharm., 252(1 – 2), 225 – 233 (2003).Google Scholar
  84. 84.
    C. Freitas and R. H. Müller, Eur. J. Pharm. Biopharm., 46(2), 145 – 151. (1998).Google Scholar
  85. 85.
    M. Nabi-Meibodi, A. Vatanara, A. R. Najafabadi, et al., Colloids Surf. B Biointerfaces, 112, 408 – 414 (2013).Google Scholar
  86. 86.
    S. Singh, A. K. Dobhal, A. Jain, et al., Chem. Pharm. Bull., 58(5), 650 – 655 (2010).Google Scholar
  87. 87.
    M. Garcýa-Fuentes, D. Torres, and M. J. Alonso, Colloids Surf. B Biointerfaces, 27(2 – 3), 159 – 168 (2003).Google Scholar
  88. 88.
    R. Nair, K. S. Arun Kumar, K. Vishnu Priya, et al., J. Biomed. Sci. Res., 3(2), 3683 – 3684 (2011).Google Scholar
  89. 89.
    C. Charcosset, A. El-Harati, and H. Fessi, J. Control. Release, 108(1), 112 – 120 (2005).Google Scholar
  90. 90.
    R. M. Shah, D. S. Eldridge, E. A. Palombo, et al., Eur. J. Pharm. Biopharm., 117, 141 – 150 (2017).Google Scholar
  91. 91.
    C. Pardeshi, P. Rajput, V. Belgamvar, et al., Acta Pharm., 62, 433 – 472 (2012).Google Scholar
  92. 92.
    K. Sato, in: Crystallization and Polymorphism of Fats and Fatty Acids, N. Garti and K. Sato (eds.), Basel, New York (1988), pp 227 – 266.Google Scholar
  93. 93.
    T. M. Riddick, Zeta-Meter Manual, Zeta Meter Inc, New York (1968).Google Scholar
  94. 94.
    C. Freitas and R. H. Müller, Int. J. Pharm., 168(2), 221 – 229 (1998).Google Scholar
  95. 95.
    E. Meyer, H. Heinzelmann, in: Scanning Tunneling Microscopy. Part II: Surface Science, R. Wiesendanger and H. J. Guntherodt (eds.), Springer Verlag, New York (1992), pp 99 – 149.Google Scholar
  96. 96.
    S. Chakraborty, B. Sahoo, I. Teraoka, et al, Carbohydr. Polym., 60(4), 475 – 481 (2005).Google Scholar
  97. 97.
    L. Dulog and T. Schauer, Prog. Org. coat., 28(1), 25 – 31 (1996).Google Scholar
  98. 98.
    A. S. Dukhin, P. J. Goetz, X. Fang, et al., J. Colloid Inter. Sci., 342(1), 18 – 25 (2010).Google Scholar
  99. 99.
    V. Jenning, K. Mäder, S. H. Gohla, Int. J. Pharm., 205(1 – 2), 15 – 21 (2000).Google Scholar
  100. 100.
    A. Dubes, H. Parrot-Lopez, W. Abdelwahed, et al., Eur. J. Pharm. Biopharm., 55(3), 279 – 282 (2003).Google Scholar
  101. 101.
    B. Drake, C. B. Prater, A. L. Weisenhorn, et al., Science, 243(4898), 1586 – 1589 (1989).Google Scholar
  102. 102.
    B. G. Zanetti-Ramos, M. B. Fritzen-Garcia, C. S. de Oliveira, et al., Mater Sci. Eng. C, 29(2) 638 – 640 (2009).Google Scholar
  103. 103.
    O. Robach, C. Quiros, S. M. Valvidares, et al., J. Magn. Magn. Mater, 264(2), 202 – 208 (2003).Google Scholar
  104. 104.
    V. Jenning and S. H. Gohla, J. Microencapsul., 18(2), 149 – 158 (2001).Google Scholar
  105. 105.
    P. Pathak and M. Nagarsenker, AAPS. PharmSciTech, 10(3), 985 – 992 (2009).Google Scholar
  106. 106.
    B. Parmar, S. Mandal, K. C. Petkar, et al., Int. J. Pharm. Sci. Nanotechnol., 4 1483 – 1490 (2011).Google Scholar
  107. 107.
    Y. Luo, D. Chen, L. Ren, et al., J. Control. Release, 114(1), 53 – 59 (2006).Google Scholar
  108. 108.
    V. Venkateswarlu and K. Manjunath, J. Control. Release, 95(3), 627 – 638 (2004).Google Scholar
  109. 109.
    R. H. Müller, C. Schwarz, A. Zur Mühlen, et al., Proct. Int. Symp. Control. Rel. Bioact. Mater., 21, 146 – 147 (1994).Google Scholar
  110. 110.
    S. Khan, World J. Pharm. Pharm. Sci., 1(1), 96 – 115 (2012).Google Scholar
  111. 111.
    K. Ruckmani, M Sivakumar, and P. A. Ganeshkumar, J. Nanosci. Nanotechnol., 6(9 – 10), 2991 – 2995 (2006).Google Scholar
  112. 112.
    S. C. Yang, L. F. Lu, Y. Cai, et al., J. Control. Release, 59(3), 299 – 307 (1999).Google Scholar
  113. 113.
    R. Pandey, S. Sharma, and G. K. Khuller, Tuberculosis, 85(5), 415 – 420 (2005).Google Scholar
  114. 114.
    R. Shirodkar, N. Reddy, N. Kumar, et al., Lat. Am. J. Pharm., 34(8), 1526 – 1533 (2015).Google Scholar
  115. 115.
    S. Martins, I. Tho, I. Reimold, et al., Int. J. Pharm., 439(1), 49 – 62 (2012).Google Scholar
  116. 116.
    Q. Y. Xiang, M. T. Wang, F. Chen, et al., Arch. Pharm. Res., 30(4), 519 – 525 (2007).Google Scholar
  117. 117.
    H. Chen, X. Chang, D. Du, et al., J. Control. Release, 110(2), 296 – 306 (2006).Google Scholar
  118. 118.
    S. K. Jain, M. K. Chourasia, R. Masuriha, et al., Drug Deliv., 12(4), 207 – 215 (2005).Google Scholar
  119. 119.
    S. Patel, S. Chavhan, H. Soni, et al., J. Drug Target, 19(6), 468 – 474 (2011).Google Scholar
  120. 120.
    M. A. Kalam, Y. Sultana, A. Ali, et al., J. Biomed. Mater. Res. A, 101(6), 1828 – 1836 (2013).Google Scholar
  121. 121.
    G. Abdelbary and R. H. Fahmy, AAPS. PharmSciTech, 10(1), 211 – 219 (2009).Google Scholar
  122. 122.
    J. Liu, T. Gong, H. Fu, et al., Int. J. Pharm., 356(1), 333 – 344 (2008).Google Scholar
  123. 123.
    M. Radtke and R. H. Müller, New Drugs, 2, 48 – 52 (2001).Google Scholar
  124. 124.
    M. Radtke, E. B. Souto, and R. H. Müller, Pharm. Tech. Europe, 17(4), 45 – 50 (2005).Google Scholar
  125. 125.
    R. Shirodkar, C. Misra, G. H. Chethan, et al., Sci. World J., 2015, 12 (2015).Google Scholar
  126. 126.
    M. Elmowafy, K. Shalaby,M. M. Badran, et al., J. Drug Deliv. Sci. Technol., 45, 230 – 239 (2018).Google Scholar
  127. 127.
    S. J. Park, C. V. Garcia, G. H. Shin, et al., Food Chem., 225, 213 – 219 (2017).Google Scholar
  128. 128.
    N. V. Shah, A. K. Seth, and R. Balaraman, et al., J. Adv. Res., 7(3), 423 – 434 (2016).Google Scholar
  129. 129.
    C. Tetyczka, M. Griesbacher, M. Absenger-Novak, et al., Int. J. Pharm., 526(1 – 2), 188 – 198 (2017).Google Scholar
  130. 130.
    P. Prabhu, S. Suryavanshi, S. Pathak, et al., Int. J. Pharm., 513(1 – 2), 504 – 517 (2016).Google Scholar
  131. 131.
    J. C. Schwarz, N. Baisaeng, M. Hoppel, et al., Int. J. Pharm., 447(1 – 2), 213 – 217 (2013).Google Scholar
  132. 132.
    E. B. Souto, S. A. Wissing, C. M. Barbosa, et al., Int. J. Pharm., 278(1), 71 – 77 (2004).Google Scholar
  133. 133.
    S. Khan, S. Baboota, J. Ali, et al., Drug Dev. Ind. Pharm., 42(2), 209 – 220 (2016).Google Scholar
  134. 134.
    V. M. Ghate, S. A. Lewis, P. Prabhu, et al., Eur. J. Pharm. Biopharm., 108, 253 – 261 (2016).Google Scholar
  135. 135.
    S. Alam, M. Aslam, A. Khan, et al., Drug Deliv., 23(2), 601 – 609 (2016).Google Scholar
  136. 136.
    Ü. Gönüllü, M. Üner, G. Yener, et al., Acta Pharm., 65(1), 1 – 13 (2015).Google Scholar
  137. 137.
    R. G. Madane and H. S. Mahajan, Drug Deliv., 23(4), 1326 – 1334 (2016).Google Scholar
  138. 138.
    A. Patil-Gadhe, A. Kyadarkunte., M. Patole, et al., Eur. J. Pharm. Biopharm., 88(1), 169 – 177 (2014).Google Scholar
  139. 139.
    S. P. Balguri, G. R. Adelli, and S. Majumdar, Eur. J. Pharm. Biopharm., 109, 224 – 235 (2016).Google Scholar
  140. 140.
    C. Zhang, S. Luo, Z. Zhang, et al., J. Taiwan Inst. Chem. Eng., 71, 338 – 343 (2017).Google Scholar
  141. 141.
    T. B. Devkar, A. R. Tekade, and K. R. Khandelwal, Colloids Surf. B, 122, 143 – 150 (2014).Google Scholar
  142. 142.
    E. B. Souto and R. H. Müller, J. Microencapul., 22(5), 501 – 510 (2005).Google Scholar
  143. 143.
    N. P. Aditya, A. S. Macedo, S. Doktorovova, et al., LWT-Food Sci. Technol., 59(1), 115 – 121 (2014).Google Scholar
  144. 144.
    A. Costa, B. Sarmento, and V. Seabra, Eur. J. Pharm. Sci., 114, 103 – 113 (2018).Google Scholar
  145. 145.
    A. Vyas, A. Jain, P. Hurkat, et al., Colloids Surf. B Biointerfaces, 131, 155 – 161 (2015).Google Scholar
  146. 146.
    J. K. Wang, Y. Y. Zhou, S. J. Guo, et al., Mater. Sci. Eng. C., 76, 944 – 950 (2017).Google Scholar
  147. 147.
    R. Swami, I. Singh, M. K. Jeengar, et al., Int. J. Pharm., 486(1–2), 287 – 296 (2015).Google Scholar
  148. 148.
    M. Ferreira, L. Barreiros, M. A. Segundo, et al., Colloids Surf. B Biointerfaces, 159, 23 – 29 (2017).Google Scholar
  149. 149.
    X. Y. Yang, Y. X. Li, M. Li, et al., Cancer Lett., 334(2), 338 – 345(2013).Google Scholar
  150. 150.
    S. K. Singh, M. K. Hidau, S. Gautam, et al., Int. J. Biol. Macromol., 108, 1092 – 1100 (2018).Google Scholar
  151. 151.
    L. M. Negi, M. Jaggi, V. Joshi, et al., Int. J. Biol. Macromol., 72, 569 – 574(2015).Google Scholar
  152. 152.
    C. Zhao, T. Fan, Y. Yang, et al., Int. J. Pharm., 450(1 – 2), 11 – 20 (2013).Google Scholar
  153. 153.
    F. Meng, S. Asghar, Y. Xu, et al., Int. J. Pharm., 506(1 – 2),46 – 56 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rupesh K. Shirodkar
    • 1
    • 2
  • Lalit Kumar
    • 1
  • Srinivas Mutalik
    • 1
  • Shaila Lewis
    • 1
    Email author
  1. 1.Department of Pharmaceutics, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalIndia
  2. 2.Department of PharmaceuticsGoa College of PharmacyPanajiIndia

Personalised recommendations