Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 5, pp 411–418 | Cite as

Calculations of Geometric Parameters and Physicochemical Properties of Complexes Formed of FE(II)-Reactive 1,2,4-Trioxolane Ring and Some Anti-Malaria Drugs Via Traceless Linker

  • Z. BayatEmail author
  • A. Gholizadeh
Article
  • 3 Downloads

There is a method to employ aberrant levels of mobile ferrous iron (Fe(II)) for selective drug delivery in vivo. This approach makes use of a 1,2,4-trioxolane moiety, which serves as an Fe(II)- sensitive “trigger,” making drug release contingent on Fe(II)-promoted trioxolane fragmentation. In this study we focused on the prototype drug conjugate of 1,2,4-trioxolane ring joined via a traceless linker to drug species, which is conjugated to the linker via a free amine or alcohol function to form a complex.We studied four complexes formed of different drugs with various linkers. The structure and physicochemical properties of complexes were studied using the Hartree – Fock method with 6-311++G** basis set. The influence of the oxalan ring and various drugs on the properties of complexes has been studied. Geometric parameter, energies, nuclear chemical shielding constants, direction of dipole moment vector, partition coefficients, electric polarizabilities, and other physicochemical properties of these compounds have been calculated.

Keywords

anti-malaria drug adamantane physicochemical properties, Hartree – Fock method oxalan 

References

  1. 1.
    R. Karaman and H. Hallak, Chem. Biol. Drug Des., 76(4), 350 – 360 (2010).CrossRefGoogle Scholar
  2. 2.
    A. T. Peterson, BMC Infect. Dis., 9, 59 (2009).CrossRefGoogle Scholar
  3. 3.
    A. Hitani, T. Nakamura, H. Ohtomo, et al., J. Infect. Chemother., 12(5),277 – 282 (2006).CrossRefGoogle Scholar
  4. 4.
  5. 5.
    H. J. Vial, S.Wein, C. Farenc, et al., Proc. Natl. Acad. Sci. USA, 101(43), 15458 – 15463 (2004).CrossRefGoogle Scholar
  6. 6.
    M. W. Hentze, M. U. Muckenthaler, B. Galy, and C. Camaschella, Cell, 142(1), 24 – 38 (2010).CrossRefGoogle Scholar
  7. 7.
    J. L. Vennerstrom et al., Nature, 430(7002), 900 – 904 (2004).CrossRefGoogle Scholar
  8. 8.
    N. Valecha et al., Clin. Infect. Dis., 51(6), 684 – 691 (2010).CrossRefGoogle Scholar
  9. 9.
    J. J. Moehrle et al., Brit. J. Clin. Pharmacol., 75(2), 524 – 537 (2013).CrossRefGoogle Scholar
  10. 10.
    C. L. Hartwig et al., J. Med. Chem., 54(23), 8207 – 8213 (2011).CrossRefGoogle Scholar
  11. 11.
    C. L. Hartwig et al., Biochem. Pharmacol. 77(3), 322 – 336 (2009).CrossRefGoogle Scholar
  12. 12.
    M. A. Fügi, S. Wittlin, Y. Dong, and J. L. Vennerstrom, Antimicrob. Agents Chemother., 54(3), 1042 – 1046 (2010).CrossRefGoogle Scholar
  13. 13.
    D. J. Creek et al., Antimicrob. Agents Chemother., 52(4), 1291 – 1296 (2008).CrossRefGoogle Scholar
  14. 14.
    A. E. Mercer et al., J. Biol. Chem., 282(13), 9372 – 9382 (2007).CrossRefGoogle Scholar
  15. 15.
    U. Eckstein-Ludwig et al., Nature, 424(6951), 957 – 961 (2003).CrossRefGoogle Scholar
  16. 16.
    R. K. Haynes et al., Chem. Med. Chem., 7(12), 2204 – 2226 (2012).CrossRefGoogle Scholar
  17. 17.
    P. M. O’Neill, et al., Angew. Chem. Int. Ed. (Engl.), 43(32), 4193 – 4197 (2004).CrossRefGoogle Scholar
  18. 18.
    M. Klemba, I. Gluzman, and D. E. Goldberg, J. Biol. Chem., 279(41), 43000 – 43007 (2004).CrossRefGoogle Scholar
  19. 19.
    E. Deu et al., Chem. Biol., 17(8), 808 – 819 (2010).CrossRefGoogle Scholar
  20. 20.
    S. Arastu-Kapur et al., Nat. Chem. Biol., 4(3), 203 – 213 (2008).CrossRefGoogle Scholar
  21. 21.
    E. Deu et al., Proc. Natl. Acad. Sci. USA, 110(45), 18244 – 18249 (2013).CrossRefGoogle Scholar
  22. 22.
    B. Spangler et al., J. Med. Chem., 59, 11161 – 11170 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Quchan BranchIslamic Azad UniversityQuchanIran

Personalised recommendations