Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 5, pp 392–410 | Cite as

Metal-Based Molecular Compounds: Structure, Analytical Properties, dsDNA Binding Studies and In Vitro Antiproliferative Activity on Selected Cancer Cell Lines

  • Mustafa ÇeşmeEmail author
  • Ayşegül GölcüEmail author
Article
  • 17 Downloads

In this work, to contribute to research in the area of new chemotherapeutic agents, we attempted at obtaining new metal-based compounds as alternatives to the existing metal-based anticancer drugs. In this context, Cu(II), Zn(II) and Pt(II) metal-based complexes of pharmaceutically active compound, effective antineoplastic methotrexate (MTX), were synthesized, and their structures were elucidated by analytical (melting point, elemental analysis, conductivity, and solubility), spectroscopic (UV-Vis, IR, 1H NMR, LC-MS and ICP-OES) and thermal (TGA, DTA) methods. UV-Vis spectroscopy examined interactions of MTX pharmaceutically active substances and their metal-based compounds with the fish sperm double-stranded DNA (FS-dsDNA). Regarding the data obtained from spectroscopic measurements, it is understood that all compounds interact with FS-dsDNA. The antiproliferative activity of the active agent MTX and the newly synthesized metal-based compounds was investigated on C6 and He-La cells in comparison to the active anticancer agents present in the market using real-time cell analyzer with four different concentrations. Also, interactions of all compounds obtained with the double-stranded FS-dsDNA were studied using pencil graphite electrode (PGE) by monitoring changes in the signal of the guanine base. The associated surface morphology was examined by differential pulse voltammetry (DPV) and scanning electron microscopy (SEM) techniques.

Keywords

metal-based drugs methotrexate drug – DNA interaction pencil graphite electrode (PGE) differential pulse voltammetry (DPV); anticancer; xCELLigence 

Notes

Acknowledgments

The authors are grateful to the TUBITAK (Project No. 112T721, COST/CM1105) and KSU (Project No. 2011/8-6D) for support. We would like to thank Prof. Dr. Ibrahim Demirtas (Cankiri Karatekin University) for his valuable help and support for anticancer activity tests.

References

  1. 1.
    A. K. Mishra, Transition Metals: Characteristics, Properties and Uses, Nova Science Publishers, New York (2011).Google Scholar
  2. 2.
    K. B. Garbutcheon-Singh, M. P. Grant, B. W. Harper, et al., Curr. Top. Med. Chem., 11, 521–542 (2011).CrossRefGoogle Scholar
  3. 3.
    A. R. Timerbaev, J. Anal. At. Spectrom., 29(6), 1058 – 1072 (2014).CrossRefGoogle Scholar
  4. 4.
    S. Medici, M. Peana, V. M. Nurchi, et al., Coord. Chem. Rev., 284, 329 – 350 (2015).CrossRefGoogle Scholar
  5. 5.
    R. L. Siegel, K. D. Miller, and A. Jemal, CA Cancer J. Clin., 66, 7–30 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Rafique, M. Idrees, A. Nasim, et al., Mol. Biol., 5, 38 – 45 (2010); http: // www.academicjournals.org / BMBR.
  7. 7.
    C. X. Zhang and S. J. Lippard, Curr. Opin. Chem. Biol., 7, 481 – 489 (2003).CrossRefGoogle Scholar
  8. 8.
    P. J. Dyson and G. Sava, Dalton Trans., 1929 – 1933 (2006).Google Scholar
  9. 9.
    C. F. Shaw, Metal-Based Drugs, Encyclopedia of Inorganic and Bioinorganic Chemistry (2011).Google Scholar
  10. 10.
    S. K. Bharti and S. K. Singh, Metal Based Drugs: Current Use and Future Potential, Scholars Research Library, Der Pharmacia Lettre, 1(2) 39 – 51 (2009); www.scholarsresearchlibrary.com.Google Scholar
  11. 11.
    A. A. Warra, J. Chem. Pharm. Res., 3, 951 – 958 (2011); www.jocpr.com.Google Scholar
  12. 12.
    A. Mukherjee and P. J. Sadler, Metals in Medicine: Therapeutic Agents, Wiley Online Library (2007).Google Scholar
  13. 13.
    A. S. Abu-Surrah and M. Kettunen, Curr. Med. Chem., 13, 1337 – 1357 (2006).CrossRefGoogle Scholar
  14. 14.
    L. Kelland, Nat. Rev. Cancer, 7, 573 – 584 (2007).CrossRefGoogle Scholar
  15. 15.
    B. Sekhon, J. Pharm. Educ. Res., 2, 1 – 20 (2011); http: //www.pcte.edu.in/jper/issues/2011 june volume 2 issue 1/review-1.pdfGoogle Scholar
  16. 16.
    J. Reglinski, Environmental and medicinal chemistry of arsenic, antimony, and bismuth, in: Chemistry of Arsenic, Antimony and Bismuth, N. C. Norman (Ed.), Blackie Academic & Professional, London (1998), pp. 403 – 440.Google Scholar
  17. 17.
    J. Humphrey and M. Copsey, Dalton Trans., 4883 (2007).Google Scholar
  18. 18.
    A. R. Timerbaev, Trends Anal. Chem., 80, 547 – 554 (2016).CrossRefGoogle Scholar
  19. 19.
    P. J. Sadler, Platinum Met. Rev., 52, 21 – 22 (2008).CrossRefGoogle Scholar
  20. 20.
    C. S. Allardyc and P. J. Dyson, Dalton Trans., 45, 3201 – 3209 (2016).CrossRefGoogle Scholar
  21. 21.
    S. J. Lippard, Metals in Medicine, in: Bioinorganic Chemistry, University Science Books, Mill Valley, California (1994), pp. 505 – 583.Google Scholar
  22. 22.
    A. S. Prasad, Ann. Rev. Pharmacol. Toxicol., 19, 393 – 426 (1979).CrossRefGoogle Scholar
  23. 23.
    S. Krupanidhi, A. Sreekumar, and C. B. Sanjeevi, Indian J. Med. Res., 128, 448 – 461 (2008).Google Scholar
  24. 24.
    B. Rosenberg, L. van Camp, and T. Krigas, Nature, 205, 698 – 699 (1965).CrossRefGoogle Scholar
  25. 25.
    B. Rosenberg, Platinum Met. Rev., 15, 42 – 51(1971).Google Scholar
  26. 26.
    I. Romero-Canelón and P. J. Sadler, Inorg. Chem., 52, 12276 – 12291 (2013).CrossRefGoogle Scholar
  27. 27.
    S. H. van Rijt and P. J. Sadler, Drug Discov. Today, 14, 1089 – 1097 (2009).CrossRefGoogle Scholar
  28. 28.
    T. Boulikas, A. Pantos, E. Bellis, and P. Christofis, Cancer Ther., 5, 537 – 58 3(2007).Google Scholar
  29. 29.
    J. Walling, Invest. New Drugs, 24, 37 – 77 (2006).CrossRefGoogle Scholar
  30. 30.
    M. J. Lind, Medicine (Baltimore), 39, 711 – 716 (2011).CrossRefGoogle Scholar
  31. 31.
    G. Notidi, A. Fulias, and I. Ledeti, Dig. J. Nanomater. Biostruct., 9, 251 – 260 (2014).Google Scholar
  32. 32.
    N. Demirezen, D. Tarýnç, D. Polat, et al., Spectrochim. Acta. A: Mol. Biomol. Spectrosc., 94 243 – 255 (2012).CrossRefGoogle Scholar
  33. 33.
    A. Wolfe, G. H. Shimer, and T. Meehan, Biochemistry, 26, 6392 – 6396 (1987).CrossRefGoogle Scholar
  34. 34.
    J.Wang A. N. Kawde, Anal. Chim. Acta, 431, 219 – 224(2001).CrossRefGoogle Scholar
  35. 35.
    E. Urcan, U. Haertel, M. Styllou, et al., Dent. Mater., 26, 51 – 58 (2010).CrossRefGoogle Scholar
  36. 36.
    N. Ke, X. Wang, X. Xu, and Y. A. Abassi, Meth. Mol. Biol., 33 – 43 (2011).Google Scholar
  37. 37.
    M. G. A. El-Wahed, M. S. Refat, and S. M. El-Megharbel, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 70, 916 – 922 (2008).CrossRefGoogle Scholar
  38. 38.
    K. Nakamoto, Infared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioionroganic Chemistry, John Wiley & Sons, New Jersey (2009).Google Scholar
  39. 39.
    K. Nakamoto and P. J. McCarthy, Spectroscopy and Structure of Metal Chelate Compounds, Wiley (1968).Google Scholar
  40. 40.
    K. R. Sangeetha Gowda, B. B. Mathew, C. N. Sudhamani, and H. S. Bhojya Naik, Biomed. Biotechnol., 2, 1 – 9 (2014).Google Scholar
  41. 41.
    D. Gibson, Pharmacogenom. J., 2, 275 – 276 (2002).CrossRefGoogle Scholar
  42. 42.
    H.-K. Liu, P. J. Sadler, et al., Acc. Chem. Res., 44, 349 – 359 (2011).CrossRefGoogle Scholar
  43. 43.
    M. Çeşme, A. Gölcü, and I. Demirtaş, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 135, 887 – 906 (2015).CrossRefGoogle Scholar
  44. 44.
    T. R. Krugh, Curr. Opin. Struct. Biol., 4, 351 – 364 (1994).CrossRefGoogle Scholar
  45. 45.
    X. G. Qu and J. B. Chaires, Meth. Enzymol. 321, 353 – 369 (2000).CrossRefGoogle Scholar
  46. 46.
    A. M. Pizarro and P. J. Sadler, Biochimie, 91, 1198 – 1211 (2009).CrossRefGoogle Scholar
  47. 47.
    L.Wang,W.-J. Li, and Y.-M. Song, RSC Adv., 4, 42285 – 42292 (2014).CrossRefGoogle Scholar
  48. 48.
    M. Sirajuddin, S. Ali, and A. Badshah, J. Photochem. Photobiol. B: Biol., 124, 1 – 19 (2013).CrossRefGoogle Scholar
  49. 49.
    F. Darabi, H. Hadadzadeh, M. Ebrahimi, et al., Inorg. Chim. Acta, 409, 379 – 389(2014).CrossRefGoogle Scholar
  50. 50.
    Z. Jannesari, H. Hadadzadeh, T. Khayamian, et al., Eur. J. Med. Chem., 69, 577 – 590 (2013).CrossRefGoogle Scholar
  51. 51.
    G. Psomas, J. Inorg. Biochem., 102 1798 – 1811 (2008).CrossRefGoogle Scholar
  52. 52.
    A. Erdem and M. Ozsoz, Electroanalysis, 14, 965 – 974 (2002).CrossRefGoogle Scholar
  53. 53.
    B. Dogan-Topal and S. A. Ozkan, Electrochim. Acta, 56, 4433 – 4438 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Art and SciencesKahramanmaras Sutcu Imam UniversityKahramanmarasTurkey
  2. 2.Department of Chemistry, Faculty of Arts and SciencesIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations