Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 5, pp 388–391 | Cite as

Evaluation of the Cytotoxic Effect of Hydroxypyridinone Derivatives on HCT116 and SW480 Colon Cancer Cell Lines

  • Hojjat Sadeghi-AliabadiEmail author
  • Mohammad Ali Zanjanchi
  • Lotfollah Saghaie
  • Mohammad Borzoei
Article
  • 11 Downloads

According to the literature, iron chelators have been used to inhibit tumor cell proliferation. Hydroxypyridinones, due to easy derivatization and high affinity for iron, have been suggested as an attractive target for the development of iron scavenging ligands. N-arylhydroxypyridinone derivatives as iron chelators have been previously designed and synthesized, and the present study is performed in order to evaluate the antitumor efficacy of these compounds,. Four derivatives of hydroxypyridinone were tested against HCT116 and SW480 colon cancer cell lines for 48 h using MTT assay. One compound (3-hydroxy-2-methyl-1-phenylpyridin-4(1H)-one, PMPO) showed the maximum cytotoxic activity on both HCT116 and SW480 cancer cells with IC50 = 243 and 180 μmol, respectively, for 48 h treatment. The obtained results demonstrated that various concentrations of test compounds exhibited significant reduction of the cell viability (P < 0.05) in a concentration dependent manner. Our findings indicate that the proposed hydroxypyridinone derivatives can be considered as a new option for the treatment of colon cancer.

Keywords

hydroxypyridinone derivatives colon cancer HCT116 cells SW480 cells MTT assay 

Notes

Conflict of Interest

There are no potential conflicts of interest for each author concerning the submitted manuscript.

References

  1. 1.
    N. El-Ebiary, R. Swellem, and G. Nawwar, Pharm. Chem. J., 51(1), 39 (2017).CrossRefGoogle Scholar
  2. 2.
    K. Deepti, K. R. Amperayani, N. S. Yarla, and U. D. Parimi, Pharm. Chem. J., 51(4), 295 (2017).CrossRefGoogle Scholar
  3. 3.
    V. Shirinyan, A. Markosyan, M. Baryshnikova, et al., Pharm. Chem. J., 51(10), 867 (2018).CrossRefGoogle Scholar
  4. 4.
    A. Pirpour Tazehkand, M. Akbarzadeh, K. Velaie, et al., Biomed. Pharmacother., 103, 755 (2018).CrossRefGoogle Scholar
  5. 5.
    D. Sun, W. Shen, F. Zhang, et al., Biomed. Pharmacother., 101, 107 (2018).CrossRefGoogle Scholar
  6. 6.
    R. A. Smith, K. S. Andrews, D. Brooks, et al., CA Cancer J. Clin., 67(2), 100 (2017). doi: https://doi.org/10.3322/caac.21392 CrossRefGoogle Scholar
  7. 7.
    A. Banerjee, S. Pathak, V. D. Subramanium, et al., Drug Discovery Today, 22(8), 1224 (2017).CrossRefGoogle Scholar
  8. 8.
    S. J. Dixon and B. R. Stockwell, Nat. Chem. Biol., 10(1), 9 (2014).CrossRefGoogle Scholar
  9. 9.
    B. Keeler, M. Brookes, Brit. J. Pharmacol., 168(6), 1313 (2013).CrossRefGoogle Scholar
  10. 10.
    D. Richardson, Crit. Rev. Oncol. Hematol., 42(3), 267 (2002).CrossRefGoogle Scholar
  11. 11.
    S. Vogel, D. Kaufmann, M. Pojarová, et al., Bioorg. Med. Chem., 16(12), 6436 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Chaves, L. Piemontese, A. Hiremathad, and M. Santos, Curr. Med. Chem., 25(1), 97 (2018).CrossRefGoogle Scholar
  13. 13.
    M. Borzoei, M. A. Zanjanchi, H. Sadeghi-aliabadi, and L. Saghaie, Food Chem., 264, 9 (2018).CrossRefGoogle Scholar
  14. 14.
    M. Borzoei, M. A. Zanjanchi, H. Sadeghi-Aliabadi, and L. Saghaie, Biol. Trace Element Res., (2019) [in press].Google Scholar
  15. 15.
    D. Arduino, D. Silva, S. M. Cardoso, et al., Front. Biosci., 13, 6763 (2008).CrossRefGoogle Scholar
  16. 16.
    N. Mobarra, M. Shanaki, H. Ehteram, et al., Int. J. Hematol. Oncol. Stem Cell Res., 10(4), 239 (2016).Google Scholar
  17. 17.
    L. Saghaie, M. M. Sadeghi, and A. Nikazma, Res. Pharm. Sci., 1(1), 40 (2007).Google Scholar
  18. 18.
    A. Fonseca-Nunes, P. Jakszyn, and A. Agudo, Cancer Epidemiol. Prevention Biomarkers, 23(1), 12 (2014).CrossRefGoogle Scholar
  19. 19.
    S. V. Torti and F. M. Torti, Nat. Rev. Cancer, 13(5), 342 (2013).CrossRefGoogle Scholar
  20. 20.
    L. M. Bystrom and S. Rivella, Free Radical Biol. Med., 79, 337 (2015).CrossRefGoogle Scholar
  21. 21.
    A. Curnow, B. Mcllroy, M. Postle-Hacon, et al., Brit. J. Cancer, 78(10), 1278 (1998).CrossRefGoogle Scholar
  22. 22.
    S. P. Foy and V. Labhasetwar, Biomaterials, 32(35), 9155 (2011).CrossRefGoogle Scholar
  23. 23.
    M. Fryknäs, X. Zhang, U. Bremberg, et al., Sci. Rep., 6, 38343 (2016).CrossRefGoogle Scholar
  24. 24.
    D. T. Puerta, J. A. Lewis, and S. M. Cohen, J. Am. Chem. Soc., 126(27), 8388 (2004).CrossRefGoogle Scholar
  25. 25.
    G. Coombs, A. Schmitt, and C. Canning, Oncogene, 31(2), 213 (2012).CrossRefGoogle Scholar
  26. 26.
    S. Song, T. Christova, S. Perusini, et al., Cancer Res., 71(24), 7628 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hojjat Sadeghi-Aliabadi
    • 1
    Email author
  • Mohammad Ali Zanjanchi
    • 2
  • Lotfollah Saghaie
    • 1
  • Mohammad Borzoei
    • 1
    • 2
    • 3
  1. 1.Department of Medicinal Chemistry, Faculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of GuilanRashtIran
  3. 3.Infectious and Tropical Diseases Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran

Personalised recommendations