Advertisement

Subvisible Particulate Matter in Therapeutic Protein Injections

  • E. S. NovikEmail author
  • A. V. Dorenskaya
  • N. A. Borisova
  • O. V. Gunar
Article
  • 1 Downloads

Strategies for determining particulate matter in therapeutic protein injections, including extrinsic and intrinsic particles, are reviewed. Special attention is devoted to the advantages and limitations of various methods used for these purposes, each of which enables different particle characteristics to be determined. The source of particles (extrinsic, intrinsic, or inherent) can be understood better and particle-size distribution and other characteristics can be studied and used to differentiate them if methods based on different measurement principles are used. Protein aggregates in drugs have broad particle-size distributions, from oligomers to particles reaching hundreds of microns. The particle properties can be used to assess the risk associated with protein aggregates in the drug and to study their possible formation mechanisms. Such information could be useful during drug development and manufacturing to reduce the particulate matter content.

Keywords

therapeutic protein injections subvisible particle determination methods 

References

  1. 1.
    J. F. Carpenter, T. W. Randolph, W. Jiskoot, et al., J. Pharm. Sci., 98(4), 1201 – 1205 (2009).CrossRefGoogle Scholar
  2. 2.
    J. G. Barnard, K. Babcock, and J. F. Carpenter, J. Pharm. Sci., 102, 915 – 928 (2013).CrossRefGoogle Scholar
  3. 3.
    J. G. Barnard, S. Singh, T. W Randolph, et al., J. Pharm. Sci., 100, 492 – 503 (2011).Google Scholar
  4. 4.
    B. S. Neha Pardeshi, Thesis for the Degree of Doctor of Philosophy, Kansas (2016).Google Scholar
  5. 5.
    D. C. Ripple, J. R. Wayment, and M. J. Carrier, Am. Pharm. Rev., July Issue (2011); http://www.americanpharmaceuticalreview.com/FeaturedArticles/36988-Standards-for-the-Optical-Detection-of-Protein-Particles.
  6. 6.
    L. O. Narhi, J. Schmit, K. Bechtold-Peters, et al., J. Pharm. Sci., 101(2), 493 – 498 (2012).CrossRefGoogle Scholar
  7. 7.
    F. Felsovalyi, S. Janvier, S. Jouffray, et al., J. Pharm. Sci., 101(12), 4569 – 4583 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Christie, R. M. Torres, R. M. Kedl, et al., J. Pharm. Sci., 103(1), 128 – 139 (2014).CrossRefGoogle Scholar
  9. 9.
    W. Jiscoot, G. Kijanka, T. W. Randolf, et al., J. Pharm. Sci., 105(5), 1567 – 1575 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Ahmadi, C. J. Bryson, E. A. Cloake, et al., Pharm. Res., 32(4), 1383 – 1394 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Jayaraman, P. M. Buck, I. A. Alphonse, et al., Eur. J. Pharm. Biopharm., 87(2), 299 – 309 (2014).CrossRefGoogle Scholar
  12. 12.
    Subvisible particulate matter in therapeutic protein injections, United States Pharmacopeia, 41th Ed., 2018; http://www.uspnf.com/uspnf
  13. 13.
    Measurement of subvisible particular matter in therapeutic protein injections. United States Pharmacopeia, 41st Ed., 2018; http://www.uspnf.com/uspnf
  14. 14.
    GPM. 1.4.2.0005.15, Visible particulate matter in parenteral and ocular dosage forms, State Pharmacopoeia of the Russian Federation, XIIIth Ed., Vol. 2, 2015, pp. 179 – 191; http://femb.ru/feml
  15. 15.
    Visible particulates in injections, United States Pharmacopeia , 41stEd., 2018; http://www.uspnf.com/uspnf
  16. 16.
    European Pharmacopoeia, 9th Ed., 2017; http://online.edqm.eu/entry.htm
  17. 17.
    RD-42-501-98, Instruction for monitoring particulate matter of drugs for injection, Moscow, 1998.Google Scholar
  18. 18.
    GPM. 1.4.2.0006.15, Subvisible particulate matter in parenteral dosage forms, State Pharmacopoeia of the Russian Federation, XIIIth Ed., Vol. 2, 2015, pp. 192 – 199; http://www.femb.ru/feml
  19. 19.
    Subvisible particulates in injections, United States Pharmacopeia, 41stEd., 2018; http://www.uspnf.com/uspnf
  20. 20.
    E. S. Novik and O. V. Gunar, Vedom. Nauchn. Tsentra Ekspert. Sredstv Med. Primen., No. 1, 58 – 61 (2012).Google Scholar
  21. 21.
    A. V. Dorenskaya and O. V. Gunar, Biozashchit. Biobezop., VI(2) (19), 48 – 54 (2014).Google Scholar
  22. 22.
    A. Fradkin, Guest Blog; http://www.downstreamcolumn.com/author/afradkin/ (2017).
  23. 23.
    R. N. Badwin, Diabet. Med., 5(8), 789 – 790 (1988).CrossRefGoogle Scholar
  24. 24.
    R. Strehl, V. Rombach-Riegraf, M. Diez, et al., Pharm. Res., 29(2), 594 – 602 (2012).CrossRefGoogle Scholar
  25. 25.
    R. Thirumangalathu, S. Krishnan, M. Speed Ricci, et al., (2009); https: 10.1002 / jps.21719.Google Scholar
  26. 26.
    K. A. Britt, D. K. Schwartz, C. Wurth, et al., J. Pharm. Sci., 101(12), 4419 – 4432 (2012).CrossRefGoogle Scholar
  27. 27.
    W. Liu, R. Swift, G. Torraga, et al., J. Pharm. Sci., 64(1), 11 – 19 (2010).Google Scholar
  28. 28.
    A.-K. Busimi, Farm. Otrasl’, No. 5, 82 – 85 (2014).Google Scholar
  29. 29.
    A. Hawe, 7 th Open Scientific EIP Symposium on Immunogenicity of Biopharmaceuticals, Lisbon, 2015.Google Scholar
  30. 30.
    D. Weinbuch, S. Zolls, M. Wiggenhorn, et al., J. Pharm. Sci., 102, 2152 – 2165 (2013).CrossRefGoogle Scholar
  31. 31.
    A. V. Dorenskaya and O. V. Gunar, Biozashch. Biobezop., VI(2) (19), 48 – 54 (2014).Google Scholar
  32. 32.
    Particulate matter in ophthalmic solutions, United States Pharmacopeia, 41st Ed., 2018; http://www.uspnf.com/uspnf.
  33. 33.
    Methods for determination of particulate matter in injections and ophthalmic solutions. United States Pharmacopeia, 41st Ed., 2018; http://www.uspnf.com/uspnf.
  34. 34.
    Globule size distribution in lipid injectable emulsions, United States Pharmacopeia, 41st Ed., 2018; http://www.uspnf.com/uspnf.
  35. 35.
    O. V. Gunar, E. S. Novik, and A. V. Dorenskaya, RU Pat. No. 2,593,779, Jul. 15, 2016.Google Scholar
  36. 36.
    O. V. Gunar, E. S. Novik, and A. V. Dorenskaya, RU Pat. No. 2,593,019, Jul. 6, 2016.Google Scholar
  37. 37.
    GPM. 1.2.1.0009.15. Optical microscopy, State Pharmacopoeia of the Russian Federation, XIIIth Ed., 2018; http://www.femb.ru/feml
  38. 38.
    Optical microscopy. United States Pharmacopeia, 41st Ed., 2018; http://www.uspnf.com/uspnf
  39. 39.
    N. N. Gavrilova, V. V. Nazarov, and O. V. Yarovaya, D. I. Mendeleev Russian Chemical Technological University, Moscow, 2012, pp. 24 – 36.Google Scholar
  40. 40.
    Scanning electron microscopy, United States Pharmacopeia, 41st Ed., 2018; http://www.uspnf.com/uspnf
  41. 41.
    A. A. Voropaev, O. F. Fadeikina, T. N. Ermolaeva, et al., Antibiot. Khimioter., 52(7 – 8), 36 – 41 (2017).Google Scholar
  42. 42.
    S. P. Rad’ko, S. A. Khmeleva, and E. V. Suprun, Biomed. Khim., 61(2), 203 – 218 (2015).CrossRefGoogle Scholar
  43. 43.
    S. K. Singh, N. Afonina, M. Awwad, et al., J. Pharm. Sci., 99(8), 3302 – 3321 (2010).CrossRefGoogle Scholar
  44. 44.
    S. Cao, Y. Jiang, and L. Narhi, Pharmacopeial Forum, 36(3), 824 – 834 (2010).Google Scholar
  45. 45.
    A. K. Tyagi, T. W. Randolph, A. Dong, et al., J. Pharm. Sci., 98(1), 94 – 104 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Nayak, J. Colandene, V. Bradford, et al., J. Pharm. Sci., 100(10), 4198 – 4204 (2011).CrossRefGoogle Scholar
  47. 47.
    O. G. Kornilova, M. A. Krivykh, E. Yu. Kudasheva, and I. V. Borisevich, Khim.-farm. Zh., 52(5), 55 – 59 (2018); Pharm. Chem. J., 52(5), 473 – 477 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. S. Novik
    • 1
    Email author
  • A. V. Dorenskaya
    • 1
  • N. A. Borisova
    • 1
  • O. V. Gunar
    • 1
  1. 1.Scientific Center for Expert Evaluation of Medicinal Products, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations