Advertisement

Sorption Properties of Sunflower Husk Melanins

  • N. V. GrachevaEmail author
  • V. F. Zheltobryukhov
MEDICINAL PLANTS

The sorption properties of sunflower husk melanins were studied according to pharmacopoeial monograph GPM.1.2.3.0021.15 using marker compounds methylene blue, methyl orange, gelatin, and iodine. The sorption capacities of the studied samples were found to be 190.9 ± 4.2 mg/g for methylene blue; 302.1 ± 1.8, methyl orange; 114.7 ± 2.8, gelatin; and 38.4 ± 2.4%, I2 . The sorption capacities of the samples were greater than those of the sorbents Polifepan and Polysorb and comparable with that of activated charcoal for medium-molecular-mass toxicants. The melanins showed high affinity for anionic substances. The protein-binding capacities of the melanins were inferior only to that of Polysorb and significantly greater than those of Polifepan and activated charcoal. The sorption capacity for I2 matched that of Polifepan and was >1.5 times less than that of activated charcoal. The results showed that enterosorbents based on melanins could be developed.

Keywords

melanins sunflower husks sorption properties 

References

  1. 1.
    V. G. Nikolaev, S. V. Mikhalovskii, and N. M. Gurina, Efferentnaya Ter., 11(4), 3 – 17 (2005).Google Scholar
  2. 2.
    S. A. Kuznetsova, M. L. Shchipko, B. N. Kuznetsov, et al., Khim. Rastit. Syr’ya, No. 2, 25 – 29 (2004).Google Scholar
  3. 3.
    E. V. Veprikova, M. L. Shchipko, S. A. Kuznetsova, et al., Khim. Rastit. Syr’ya, No. 1, 65 – 70 (2005).Google Scholar
  4. 4.
    E. S. Kokh, A. S. Gavrikov, A. A. Tumashov, et al., Nauchn. Vedom. BelGU Ser.: Med. Farm., 201(4), 160 – 166 (2015).Google Scholar
  5. 5.
    M. G. Ismailov, Kh. M. Makhkamov, and P. L. Ismailov, Khim.-farm. Zh., 34(12), 38 – 40 (2000).Google Scholar
  6. 6.
    O. Yu. Kuznetsova, Vestn. Kazan. Tekhnol. Univ., 23(16), 136 – 138 (2013).Google Scholar
  7. 7.
    N. V. Sushinskaya, T. A. Kukulyanskaya, N. V. Gavrilenko, et al., Usp. Med. Mikol., 3(3), 192 – 195 (2004).Google Scholar
  8. 8.
    N. V. Ikonnikova, I. A. Goncharova, and N. M. Rovbel’, Usp. Med. Mikol., 5, 187 – 190 (2005).Google Scholar
  9. 9.
    D. A. Novikov, Tr. BGU Ser.: Fiziol., Biokhim. Mol. Osnovy Funktsion. Biosistem, 1, 105 – 114 (2006).Google Scholar
  10. 10.
    E. A. Prutenskaya, A. S. Vasil’ev, E. Yu. Lebedeva, et al., Simvol Nauki, 11, No. 3, 11 – 13 (2016).Google Scholar
  11. 11.
    V. A. Baraboi, Usp. Sovrem. Biol., 12, 1 – 12 (2001).Google Scholar
  12. 12.
    N. V. Gracheva, V. F. Zheltobryukhov, and V. F. Kablov, in: Proceedings of the IInd All-Russian Scientific-Practical Internet-Conference with International Participation [in Russian], Petrozavodsk, 2016, pp. 19 – 22.Google Scholar
  13. 13.
    G. Britton, The Biochemistry of Natural Pigments, Cambridge Univ. Press, New York, 1983, 366 pp. [Russian translation, Mir Moscow, 1986, pp. 92 – 99, 259 – 279].Google Scholar
  14. 14.
    N. V. Gracheva, Vestn. Kazan. Tekhnol. Univ., 19(15), 154 – 157 (2016).Google Scholar
  15. 15.
    S. P. Lyakh, Microbial Melaninogenesis and Its Function [in Russian], Nauka, Moscow, 1981, pp. 22 – 270.Google Scholar
  16. 16.
    L. A. Kazitsina and N. B. Kupletskaya, Applications of UV, IR and NMR Spectroscopy in Organic Chemistry [in Russian], Vysshaya Shkola, Moscow, 1971, pp. 23 – 60, 235 – 257.Google Scholar
  17. 17.
    V. S. Chuchalin and N. V. Kelus, Razrab. Regist. Lek. Sredstv, 12(12), 86 – 91 (2015).Google Scholar
  18. 18.
    E. V. Veprikova, S. A. Kuznetsova, G. P. Skvortsova, et al., SibFU J. Chem., 1(3), 286 – 292 (2008).Google Scholar
  19. 19.
    V. I. Reshetnikov, Khim.-farm. Zh., 37(5), 28 – 32 (2003).Google Scholar
  20. 20.
    D. N. Olennikov, Author’s Abstract of a Doctoral Dissertation in Pharmaceutical Sciences, Ulan-Ude, 2012.Google Scholar
  21. 21.
    N. V. Kelus, V. V. Sheikin, A. E. Gundareva, et al., Byull. Sib. Med., No. 1, 121 – 125 (2011).Google Scholar
  22. 22.
    V. M. Mukhin, P. V. Uchanov, and N. I. Sotnikova, Sorbtsionnye Khromatogr. Protsessy, 13(1), 83 – 90 (2013).Google Scholar
  23. 23.
    E. P. Gernikova, A. I. Luttseva, T. N. Bokovikova, et al., Vedom. NTsESMP, No. 4, 48 – 50 (2013).Google Scholar
  24. 24.
    V. N. Panfilova and T. E. Taranushenko, Pediatr. Farmakol., 9(6), 34 – 39 (2012).CrossRefGoogle Scholar
  25. 25.
    V. A. Solov’ev and A. M. Kutnevich, Higher Fungi and Their Physiologically Active Compounds [in Russian], Nauka, Leningr. Otd., Leningrad, 1973, pp. 35 – 39.Google Scholar
  26. 26.
    D. A. Markelov, O. V. Nitsak, and I. I. Gerashchenko, Khim.- farm. Zh., 42(7), 30 – 33 (2008).Google Scholar
  27. 27.
    A. A. Chuiko (ed.), Medicinal Chemistry and Clinical Application of Silicon Dioxide [in Russian], Naukova Dumka, Kiev, 2003, pp. 12 – 18, 131 – 144.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations