Water-Soluble Anionic C60-Fullerene Derivatives as Antidotes for HG(II) Ions in Tests on Escherichia Coli Cells

  • A. V. Zhilenkov
  • E. A. Khakina
  • P. A. TroshinEmail author
  • I. F. Karimov
  • D. G. Deryabin

Three water-soluble C60-fullerene derivatives functionalized by anionic adducts of various chemical compositions and structures were prepared in highly specific reactions of chlorofullerene C60Cl6. Hybrid metal-organic complexes formed and aggregated in several instances in aqueous solution in the presence of stoichiometric (1:1 by moles) amounts of synthesized C60-fullerene derivatives and Hg(II) ions. The bioavailability of Hg(II) ions for Escherichia coli cells was reduced by such a reaction and manifested as decreased toxicity for strain E. coli K12 TG1 pF1 or weakened protective reactions of strain E. coli K12 MG1655 pMerA'::lux. The most pronounced protective effect was recorded for the C60-fullerene derivative functionalized by S-containing adducts of general formula –S(CH2)10CO2K with antidote activity comparable with that of the pharmacopoeial preparation Unithiol.


C60-fullerene HgCl2 bioavailability Escherichia coli 



The studies were financially supported by RFBR Grant No. 16-53-52030 and the Ministry of Education and Science of the RF (No. 0089-2019-0010) (synthesis of fullerene derivatives) and State Task for Research No. 0761-2019-0005 (bioavailability studies of Hg ions after reacting with fullerene derivatives).


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature, 318(6042), 162 – 163 (1985).CrossRefGoogle Scholar
  2. 2.
    A. Lin, S. Fang, S. Lin, et al., Neurosci. Res., 43(4), 317 (2002).CrossRefGoogle Scholar
  3. 3.
    Y. Tabata, T. Ishii, T. Aoyama, et al., in: Perspectives of Fullerene Nanotechnology, E. Osawa (ed.), Kluver Acad. Publ., Dordrecht-Boston-London, 2002, p. 375.Google Scholar
  4. 4.
    O. L. Kobzar, V. V. Trush, V. Yu. Tanchuk, et al., Bioorg. Med. Chem. Lett., 24(14), 3175 – 3179 (2014).CrossRefGoogle Scholar
  5. 5.
    V. Zarubaev, A. Slita, L. Rasnetsov, et al., Antiviral Res., 86(1), A70 (2010).CrossRefGoogle Scholar
  6. 6.
    R. A. Kotel’nikova, I. I. Faingold, D. A. Poletaeva, et al., Russ. Chem. Bull., 60(6), 1172 (2011).CrossRefGoogle Scholar
  7. 7.
    S. H. Friedman, D. L. DeCamp, R. P. Sijbesma, et al., J. Am. Chem. Soc., 115(15), 6506 (1993).CrossRefGoogle Scholar
  8. 8.
    H. Kataoka, T. Ohe, K. Takahashi, et al., Bioorg. Med. Chem. Lett., 26(19), 4565 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Munoz, D. Sigwalt, B. M. Illescas, et al., Nat. Chem., 8(1), 50 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Shoji, E. Takahashi, D. Hatakeyama, et al., PLoS One, 8(6), e66337 (2013).CrossRefGoogle Scholar
  11. 11.
    K. Kamaras and G. Klupp, Dalton Trans., 43(20), 7366 (2014).CrossRefGoogle Scholar
  12. 12.
    D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter, 29(14), 145602 (2017).Google Scholar
  13. 13.
    V. N. Thekkudan, V. K. Vaidyanathan, S. K. Ponnusamy, et al., IET Nanobiotechnol., 11(3), 213 – 224 (2017).CrossRefGoogle Scholar
  14. 14.
    J. Chwastowska, W. Skwara, M. Sadowska-Bratek, et al., Annual Report of Institute of Nuclear Chemistry and Technology, INCT, Warsaw, Poland, 2009, pp. 98 – 99.Google Scholar
  15. 15.
    J. Heimann, L. Morrow, R. Anderson, et al., Dalton Trans., 44(9), 4380 – 4388 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Pradhan, J. P. Pinheiro, S. Seena, et al., Appl. Environ. Microbiol., 80(18), 5874 – 5881 (2014).CrossRefGoogle Scholar
  17. 17.
    N. E. Fedorova, R. R. Klimova, Y. A. Tulenev, et al., Mendeleev Commun., 22(5), 254 – 256 (2012).CrossRefGoogle Scholar
  18. 18.
    A. B. Kornev, E. A. Khakina, S. I. Troyanov, et al., Chem. Commun., 48(44), 5461 – 5463 (2012).CrossRefGoogle Scholar
  19. 19.
    E. A. Khakina, A. A. Yurkova, A. S. Peregudov, et al., Chem. Commun., 48(57), 7158 – 7160 (2012).CrossRefGoogle Scholar
  20. 20.
    V. S. Danilov, A. P. Zarubina, G. E. Eroshnikov, et al., Vestn. Mosk. Univ., Ser. 16: Biol., 3, 20 – 24 (2002).Google Scholar
  21. 21.
    G. B. Zavil’gel’skii, V. Yu. Kotova, and I. V. Manukhov, Khim. Fiz., 31(10), 15 – 20 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Zhilenkov
    • 1
  • E. A. Khakina
    • 1
  • P. A. Troshin
    • 1
    • 3
    Email author
  • I. F. Karimov
    • 2
    • 4
  • D. G. Deryabin
    • 2
  1. 1.Institute for Problems of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Federal Scientific Center of Biological Systems and AgrotechnologiesOrenburgRussia
  3. 3.Skolkovo Institute of Science and TechnologyOrenburgRussia
  4. 4.Orenburg State UniversityOrenburgRussia

Personalised recommendations