Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 2, pp 134–138 | Cite as

Synthesis, Physicochemical Properties, and Antimicrobial Activity of Polymyxin B1 Conjugates with Polyglutaraldehyde

  • V. V. ShalyginaEmail author
  • E. N. Vlasova
  • E. P. Anan’eva
  • V. A. Gaidukova
Article
  • 17 Downloads

Polymyxin B1 conjugates with polyglutaraldehyde were synthesized using reductive amination. The synthesized polymeric antibiotic derivatives were tested for antimicrobial activity against Gram-negative and Gram-positive bacteria. Polymyxin B1 was found to be stable under the reaction conditions. The main structural factors influencing the antimicrobial activity of these conjugates were the composition and structure of the polyglutaraldehyde polymer chain. The polymer-antibiotic conjugates were very soluble in aqueous solutions and organic solvents.

Keywords

polymyxin B1 polyglutaraldehyde reductive amination conjugate antimicrobial activity 

References

  1. 1.
    E. V. Shchetinin, Klin. Mikrobiol. Antimicrob. Khimioter., 2(3), 68 – 73 (2000).Google Scholar
  2. 2.
    M. D. Mashkovskii, Drugs [in Russian], Novaya Volna, Moscow, 2005.Google Scholar
  3. 3.
    T. Velkov, K. D. Roberts, R. L. Nation, et al., Future Microbiol., 8(6), 711 – 724 (2013).CrossRefGoogle Scholar
  4. 4.
    Z. T. Sinitsyna and S. M. Mamiofe, Usp. Khim., XXXI, No. 2, 211 – 221 (1962).Google Scholar
  5. 5.
    G. F. Gauze, Molecular Bases of Antibiotic Activity [in Russian], Mir, Moscow, 1975.Google Scholar
  6. 6.
    N. S. Egorov (ed.), Antibiotics – Polypeptides: (Structure, Function and Biosynthesis) [in Russian], Izd. Mosk. Univ., Moscow (1987).Google Scholar
  7. 7.
    M. Vaara, J. Fox, G. Loidl, et al., Antimicrob. Agents Chemother., 52(9), 3229 – 3236 (2008).Google Scholar
  8. 8.
    M. Vaara and T. Vaara, Peptides, 31, No. 12, 2318 – 2321 (2010).CrossRefGoogle Scholar
  9. 9.
    Y. Sato, M. Shindo, N. Sakura, et al., Chem. Pharm. Bull., 59(5), 597 – 602 (2011).CrossRefGoogle Scholar
  10. 10.
    E. L. Achilova, S. V. Gurina, and V. V. Shalygina, Probl. Med. Mikol., 20(2), 64 (2018).Google Scholar
  11. 11.
    G. T. Hermanson, Bioconjugate Techniques, Academic Press, San Diego, 1996.Google Scholar
  12. 12.
    A. H. Thomas and I. Holloway, J. Chromatogr., 161(5), 417 – 420 (1978).CrossRefGoogle Scholar
  13. 13.
    S. Margel and A. Rembaum, Macromolecules, 13(1), 19 – 24 (1980).CrossRefGoogle Scholar
  14. 14.
    A. N. Mironov and N. D. Butanyan (eds.), Handbook for Preclinical Drug Trials [in Russian], Part 1, Grif i K, Moscow, 2012.Google Scholar
  15. 15.
    I. P. Ashmarin, Statistical Methods in Microbiological Research [in Russian], Izd. Med. Lit., Leningrad, 1986.Google Scholar
  16. 16.
    D. M. Ilstrup, Clin. Microbiol. Rev., 3(3), 219 – 226 (1990).CrossRefGoogle Scholar
  17. 17.
    V. V. Shalygina, E. N. Vlasova, V. A. Gaidukova, et al., Zh. Obshch. Khim., 88(6), 1014 – 1019 (2018).Google Scholar
  18. 18.
    A. A. Berlin, M. A. Geiderikh, B. E. Davydov, V. A. Kargin, G. P. Kropacheva, B. A. Krentsel', and G. V. Khutareva, Chemistry of Polyconjugated Systems [in Russian], Khimiya, Moscow, 1972.Google Scholar
  19. 19.
    N. M. Witzke and H. Heding, J. Antibiot., 29(12), 1349 – 1350 (1976).CrossRefGoogle Scholar
  20. 20.
    E. P. Anan’eva, V. A. Gaidukova, A. V. Karavaeva, et al., Probl. Med. Mikol., 20(2), 47 – 48 (2018).Google Scholar
  21. 21.
    J. P. Powers and R. E. Hancock, Peptides, 24(11), 1681 – 1691 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Shalygina
    • 1
    Email author
  • E. N. Vlasova
    • 1
  • E. P. Anan’eva
    • 2
  • V. A. Gaidukova
    • 2
  1. 1.Institute of Macromolecular Compounds, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Chemical Pharmaceutical AcademySt. PetersburgRussia

Personalised recommendations