Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 11, pp 942–945 | Cite as

Methods of Microbial Identification During Drug Quality Analysis and Applicability Assessment

  • O. V. GunarEmail author
  • N. G. Sakhno
Article
  • 3 Downloads

Rapid and correct identification of microorganisms is an essential part of pharmaceutical analysis. Several phenotypic, genotypic, and proteotypic methods, each of which has its own advantages and limitations, are currently used to identify microorganisms. The aim of the present work was to reveal features and validate the operation of a Vitek 2 Compact 30 bacteriological analyzer (bioMerieux, France), which was based on determining the biochemical properties of microorganisms. The applicability of this method was determined using accuracy, precision, and robustness. Correct results were found in 86% of 396 cases. Results obtained under repeatability and intermediate precision conditions showed no differences. Approaches to molecular and genetic identification of microorganisms isolated from preparations in addition to automated biochemical identification were discussed.

Keywords

pharmaceutical products microorganism identification 

Notes

Acknowledgments

The work was performed in the framework of State Task for SCEEMP, Ministry of Health of Russia, No. 056-00023-18-02 for applied scientific research (State Contract No. NIR AAAA-A18-118021590049-0).

References

  1. 1.
    O. V. Gunar, N. G. Sakhno, M. V. Roshchina, V. E. Grigor?eva, et al., Vedom. NTsESMP, 4, 7 – 11 (2014); O. V. Gunar, N. G. Sakhno, M. V. Roshchina, et al., Sci. Centre Expert Eval. Med. Prod. Bull., 4, 7 – 11 (2014).Google Scholar
  2. 2.
    R. A. Volkova, E. S. Skolotneva, E. V. Elbert, et al., BIOprep. Profil. Diagn. Lech., No. 2, 9 – 14 (2015); R. A. Volkova, E. S. Skolotneva, E. V. Elbert, et al., BIOprep. Prev. Diagn. Treat., No. 2, 9 – 14 (2015); https: // doi.org / 10.30895 /2221-996X-2015-2-9-14.Google Scholar
  3. 3.
    D. S. Davydov, M. P. Rudnik, A. A. Movsesyants, et al., BIOprep. Profil. Diagn. Lech., No. 4, 52 – 58 (2015); D. S. Davydov, M. P. Rudnik, A. A. Movsesyants, et al., Bioprep. Prev. Diagn. Treat., No. 4, 52 – 58 (2015); https: //doi.org / 10.30895 / 2221-996X-2015-4-52-58.Google Scholar
  4. 4.
    The United States Pharmacopeia, 40th Ed., The United States Pharmacopeial Convention, Rockville, MD (2017).Google Scholar
  5. 5.
    J. Hakovirta, Modern Techniques in Detection, Identification and Quantification of Bacteria and Peptides from Foods, Helsinki (2008).Google Scholar
  6. 6.
    L. Li, N. Mendis, H. Trigui, et al., Front. Microbiol., 5, Article 258 (2014).Google Scholar
  7. 7.
    T. Sandle, Pharmaceutical Microbiology: Essentials for Quality Assurance and Quality Control, Woodhead Publishing, UK (2015).Google Scholar
  8. 8.
    G. Funke, D. Monnet, C. de Bernardis, et al., J. Clin. Microbiol., 36(7), 1948 – 1952 (1998).Google Scholar
  9. 9.
    S. Q. van Veen, E. C. Claas, and E. J. Kuijper, J. Clin. Microbiol., 48, 900 – 907 (2010).CrossRefGoogle Scholar
  10. 10.
    P. C. Schreckenberger, K. L. Ristow, and A. M. Krilcich, Comparison of the Vitek legacy, Vitek 2 colorimetric and Phoenix systems for identification of fermenting and non-fermenting bacteria of clinical origin, 105th General Meeting of the American Society for Microbiology, USA (2005).Google Scholar
  11. 11.
    U. Eigner, A. Schmid, U. Wild, D. Bertsch, et al., J. Clin. Microbiol., 43(8), 3829 – 3834 (2005).CrossRefGoogle Scholar
  12. 12.
    L. Guo, L. Ye, Q. Zhao, et al., J. Thorac. Dis., 6(5), 534 – 538 (2014).Google Scholar
  13. 13.
    C. M. O’Hara, F. C. Tenover, and J. M. Miller, J. Clin. Microbiol., 31(12), 3165 – 3169 (1993).Google Scholar
  14. 14.
    J. A. Odumeru, M. Steele, L. Fruhner, et al., J. Clin. Microbiol., 37(4), 944 – 949 (1999).Google Scholar
  15. 15.
    S. Sutton, Am. Pharm. Rev., 15(6), 36 – 48 (2012).Google Scholar
  16. 16.
    FDA. Bacteriological Analytical Manual (BAM), 8th Ed., Rev. A; URL:http: // www.fda.gov / Food / FoodScienceResearch /LaboratoryMethods / ucm2006949.htm.
  17. 17.
    S. M. Tallent, K. M. Kotewicz, E. A. Strain, and R. W. Bennett, J. AOAC Int., 95(2), 446 – 451 (2012).CrossRefGoogle Scholar
  18. 18.
    N. J. Tourasse, O. A. Okstad, and A. B. Kolsto, Database (2010), Article ID baq017; DOI:10.1093 / database / baq017.
  19. 19.
    A. Sorokin, B. Candelon, K. Guilloux, et al., Appl. Environ. Microbiol., 72(2), 1569 – 1578 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Sebaihia, M. W. Peck, N. P. Minton, et al., Genome Res., 17(7), 1082 – 1092 (2007); DOI: 10.1101 / gr.6282807.Google Scholar
  21. 21.
    S. Sutton and A. M. Cundell, Pharmacopeial Forum, 30(5), 1884 – 1894 (2004).Google Scholar
  22. 22.
    European Pharmacopeia, 9th Ed., Council of Europe, Strasbourg (2017).Google Scholar
  23. 23.
    PI 0012-3. Recommendations on Sterility Testing, Secretariat of the Pharmaceutical Inspection Convention, Belgium (2007).Google Scholar
  24. 24.
    B. Malorny, P. T. Tassios, P. Radstrom, et al., Int. J. Food Microbiol., 83, 39 – 48 (2003).CrossRefGoogle Scholar
  25. 25.
    L. Jimenes, S. Smalls, and R. Ignar, J. Microbiol. Methods, 41(3), 259 – 265 (2000).CrossRefGoogle Scholar
  26. 26.
    K. Cankar, D. Stebih, T. Dreo, J. Zel, et al., BMC Biotechnol., 6(37), doi:10.1186 / 1472-6750-6-37 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Scientific Center for Expert Evaluation of Medicinal ProductsMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations