Advertisement

Pharmaceutical Chemistry Journal

, Volume 52, Issue 11, pp 890–901 | Cite as

Polyene Macrolide Antibotic Derivatives: Preparation, Overcoming Drug Resistance, and Prospects for Use in Medical Practice (Review)

  • V. V. BelakhovEmail author
  • A. V. Garabadzhiu
  • T. B. Chistyakova
SEARCH FOR NEW DRUGS

Series of semi-synthetic polyene macrolide antibiotics (PMAs) that were prepared by chemical modification in original research by the authors are reviewed. Chemical modification, in particular phosphorylation, was shown to produce highly efficacious PMAs with low toxicities and extended spectra of biological activity. The prospects of using liposomal and nano-derivatives of these antifungal antibiotics are discussed. Crucial issues related to the resistance of pathogenic fungi and the expanding distribution of invasive mycoses are identified. Semi-synthetic PMAs are shown to be highly effective at preventing and treating invasive mycoses and opportunistic fungal infections occurring in AIDS patients. Special attention is paid to structure—activity relationships for the semi-synthetic PMAs. Possible mechanisms of action of these compounds on pathogenic fungi are discussed. An automated intellectual information system was developed for selecting the optimal conditions for development, synthesis, and application in medical practice of new PMAs.

Keywords

polyene macrolide antibiotics chemical modification semi-synthetic derivatives nanotechnology drug resistance invasive mycoses AIDS automated intellectual information system 

References

  1. 1.
    A. V. Katlinskii, Yu. O. Sazykin, M. V. Bibikova, and S. N. Orekhov, Antibiot. Khimioter., 48(9), 20 – 27 (2003).Google Scholar
  2. 2.
    J. D. Nosanchuk, Recent Pat. Anti-Infect. Drug Discovery, 1(1), 75 – 84 (2006).Google Scholar
  3. 3.
    E. Jucker (ed.), Antifungal Agents: Advances and Problems, Special Topic: Progress in Drug Research, Basel, Birkhaeuser Verlag (2003).Google Scholar
  4. 4.
    A. Yu. Sergeev and Yu. V. Sergeev, Candidiasis. Nature of Infection, Mechanism of Aggression and Protection, Laboratory Diagnosis, Clinic and Treatment [in Russian], Triada-X, Moscow (2001), pp. 187 – 188.Google Scholar
  5. 5.
    A. Yu. Sergeev and Yu. V. Sergeev, Fungal Infections. Handbook for Physicians [in Russian], BINOM, Moscow (2008), pp. 142 – 145.Google Scholar
  6. 6.
    S. N. Kozlov and L. S. Strachunskii, Modern Antimicrobial Chemotherapy [in Russian], OOO Meditsinskoe Informatsionnoe Agentstvo, Moscow (2009), pp. 19 – 23.Google Scholar
  7. 7.
    N. N. Klimko and A. V. Veselov, Klin. Mikrobiol. Antimikrob. Khimioter., 5(4), 342 – 353 (2003).Google Scholar
  8. 8.
    N. N. Klimko and A. S. Kolbin, Probl. Med. Mikol., 7(3), 3 – 11 (2005).Google Scholar
  9. 9.
    A. V. Veselov, Klin. Mikrobiol. Antimicrob. Khimioter., 9(1), 73 – 80 (2007).Google Scholar
  10. 10.
    Yu. V. Sergeev, B. I. Shpigel’, and A. Yu. Sergeev, Pharmacotherapy of Mycoses [in Russian], Meditsina dlya Vsekh, Moscow (2003).Google Scholar
  11. 11.
    R. A. Aravinskii, N. N. Klimko, and N. V. Vasil’eva, Diagnosis of Mycoses [in Russian], Izdatel’skii Dom SPbMAPO, St. Petersburg (2004).Google Scholar
  12. 12.
    S. B. Zotchev, Curr. Med. Chem., 10(3), 211 – 223 (2003).Google Scholar
  13. 13.
    A. T. Coste and P. Vandeputte (eds.), Antifungals: From Genomics to Resistance and the Development of Novel Agents, Caister Academic Press, Norfolk, UK (2015).Google Scholar
  14. 14.
    G. San-Blas and R. A. Calderone (eds.), Pathogenic Fungi: Insights in Molecular Biology, Caister Academic Press, Norfolk, UK (2008).Google Scholar
  15. 15.
    E. Reiss, H. J. Shadomy, and G. M. Lyon, Fundamental Medical Mycology, Wiley-Blackwell, Hoboken, NJ, USA (2011).Google Scholar
  16. 16.
    D. J. Sillivan and G. P. Morgan (eds.), Human Pathogenic Fungi: Molecular Biology and Pathogenic Mechanisms, Caister Academic Press, Norfolk, UK (2014).Google Scholar
  17. 17.
    S. Omura (ed.), Macrolide Antibiotics: Chemistry, Biology and Practice, Academic Press, New York (2002).Google Scholar
  18. 18.
    M. Masayuki and K. Gomi (eds.), Aspergillus: Molecular Biology and Genomics, Caister Academic Press, Norfolk, UK (2010).Google Scholar
  19. 19.
    R. Grillot and B. Lebeau, in: Antimicrobial Agents, A. Bryskier (ed.), American Society for Microbiology, Washington (2005), pp. 1260 – 1287.Google Scholar
  20. 20.
    T. C. White, J. Harry, and B. G. Oliver, in: Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research, K. Esser and J. W. Bennet (eds.), Springer-Verlag, Berlin (2004), pp. 319 – 337.Google Scholar
  21. 21.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, Khim.- farm. Zh., 27(2), 14 – 21 (1993).Google Scholar
  22. 22.
    Yu. D. Shenin and V. V. Belakhov, Antibiot. Khimioter., 42(4), 34 – 46 (1997).Google Scholar
  23. 23.
    A. A. Volmer, A. M. Szpilman, and E. M. Carreira, Nat. Prod. Rep., 27(9), 1329 – 1349 (2010).Google Scholar
  24. 24.
    M. Sedlak, Mini-Rev. Med. Chem., 9(11), 1306 – 1316 (2009).Google Scholar
  25. 25.
    S. E. Solov’eva, E. N. Olsuf’eva, and M. N. Preobrazhenskaya, Usp. Khim., 80(20), 115 – 138 (2011).Google Scholar
  26. 26.
    R. G. Hall, Chimia, 64(1–2), 34 – 36 (2010).Google Scholar
  27. 27.
    M. Jokanovic, Curr. Top. Med. Chem. (Sharjah, United Arab Emirates), 12(16), 1775 – 1789 (2012).Google Scholar
  28. 28.
    E. Balint, E. Fazekas, and J. Takacs, Phosphorus Sulfur Silicon Relat. Elem., 188(1–3), 48 – 50 (2013).Google Scholar
  29. 29.
    S. S. Le Corre, M. Berchel, H. Couthon-Gourves, et al., Beilstein J. Org. Chem., 10, 1166 – 1196 (2014).Google Scholar
  30. 30.
    D. E. C. Corbridge, Phosphorus: Chemistry, Biochemistry and Technology, CRC Press (Taylor & Francis Group), Boca Raton, FL, USA (2013).Google Scholar
  31. 31.
    M. Dziegielewski, J. Pieta, E. Kaminska, and L. Albrecht, Eur. J. Org. Chem., 2015(4), 677 – 702 (2015).Google Scholar
  32. 32.
    H. R. Hudson, N. J. Wardle, S. W. A. Bligh, et al., Mini-Rev. Med. Chem., 12(4), 313 – 325 (2012).Google Scholar
  33. 33.
    L. Albrecht, A. Albrecht, H. Krawczyk, and K. A. Jorgensen, Chem. Eur. J., 16(1), 28 – 48 (2010).Google Scholar
  34. 34.
    Q. Xi, Y-B. Zhou, C.-Q. Zhao, et al., Mini-Rev. Med. Chem., 13(6), 824 – 835 (2013).Google Scholar
  35. 35.
    B. Lejczak and P. Kafarski, in: Topics in Heterocyclic Chemistry, Vol. 20, Phosphorous Heterocycles I, R. K. Bansal (ed.), Springer, (2009), pp. 31 – 63.Google Scholar
  36. 36.
    A. Mucha, P. Kafarski, and L. Berliki, J. Med. Chem., 54(17), 5955 – 5980 (2011).Google Scholar
  37. 37.
    V. I. Krutikov, A. V. Erkin, and V. V. Krutikova, Zh. Obshch. Khim., 82(5), 713 – 718 (2012).Google Scholar
  38. 38.
    S. Demkowicz, J. Rachon, M. Dawsco, and W. Kozak, RSC Adv., 6(9), 7101 – 7112 (2016).Google Scholar
  39. 39.
    G. Keglevich and E. Balint, Molecules, 17(11), 12821 – 12835 (2012).Google Scholar
  40. 40.
    V. V. Belakhov, Yu. D. Shenin, B. I. Ionin, et al., Antibiot. Khimioter., 35(8), 31 – 35 (1990).Google Scholar
  41. 41.
    V. V. Belakhov, Yu. D. Shenin, B. I. Ionin, et al., Khim.-farm. Zh., 25(11), 45 – 48 (1991).Google Scholar
  42. 42.
    V. V. Belakhov, Yu. D. Shenin, R. A. Araviiskii, and E. B. Shtil’bans, Antibiot. Khimioter., 41(7/8), 4 – 8 (1996).Google Scholar
  43. 43.
    V. V. Belakhov and Yu. D. Shenin, Khim.-farm. Zh., 41(6), 26 – 30 (2007).Google Scholar
  44. 44.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, Russ. J. Gen. Chem., 78(2), 305 – 312 (2008).Google Scholar
  45. 45.
    V. V. Belakhov, V. A. Kolodyaznaya, and B. I. Ionin, Khim. Prom-st., 89(2), 64 – 76 (2012).Google Scholar
  46. 46.
    V. V. Belakhov and A. V. Garabadzhiu, Zh. Obshch. Khim., 85(2), 236 – 244 (2015).Google Scholar
  47. 47.
    V. V. Belakhov, A. V. Garabadzhiu, and B. I. Ionin, in: Proceedings of the VIIIth International Scientific and Practical Conference “Perspective Directions of World’s Science” Byal-GRAD OOD, Sofia, Bulgaria, 34, 80 – 84 (2012).Google Scholar
  48. 48.
    V. V. Belakhov and B. I. Ionin, Izv. SPbGTI(TU), No. 17, 51 – 52 (2012).Google Scholar
  49. 49.
    V. V. Belakhov, V. A. Kolodyaznaya, and A. V. Garabadzhiu, Zh. Obshch. Khim., 84(10), 1676 – 1684 (2014).Google Scholar
  50. 50.
    V. V. Belakhov, A. V. Garabadzhiu, T. B. Chistyakova, et al., Zh. Obshch. Khim., 86(3), 427 – 436 (2016).Google Scholar
  51. 51.
    V. V. Belakhov, V. A. Kolodyaznaya, A. V. Garabadzhiu, et al., in: Progress in Medical Mycology [in Russian], XVI, National Academy of Mycology, Moscow (2016), pp. 114 – 119.Google Scholar
  52. 52.
    A. V. Dogadina, V. V. Belakhov, B. I. Ionin, et al., in: Proceedings of the First Russian Conference on Medicinal Chemistry (MedChem Russia – 2013) [in Russian], RBR Print, Moscow (2013), p. 55.Google Scholar
  53. 53.
    V. V. Belakhov, A. V. Dogadina, and B. I. Ionin, Izv. SPbGTI(TU), No. 19, 67 – 70 (2013).Google Scholar
  54. 54.
    Yu. D. Shenin, V. V. Belakhov, L. I. Shatik, and R. A. Araviiskii, Antibiot. Khimioter., 43(12), 8 – 11 (1998).Google Scholar
  55. 55.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, Khim.-farm. Zh., 32(2), 52 – 53 (1998).Google Scholar
  56. 56.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, Khim.-farm. Zh., 41, No. 9, 26 – 28 (2007).Google Scholar
  57. 57.
    V. V. Belakhov, A. A. Levina, Yu. D. Shenin, and B. I. Ionin, Khim.-farm. Zh., 25(3), 86 – 87 (1991).Google Scholar
  58. 58.
    V. V. Belakhov and Yu. D. Shenin, Khim.-farm. Zh., 42(7), 15 – 18 (2008).Google Scholar
  59. 59.
    V. V. Belakhov and Yu. D. Shenin, Khim.-farm. Zh., 41(7), 20 – 24 (2007).Google Scholar
  60. 60.
    V. V. Belakhov and V. A. Kolodyaznaya, in: Progress in Medical Mycology [in Russian], XII, National Academy of Mycology, Moscow (2014), pp. 377 – 379.Google Scholar
  61. 61.
    V. V. Belakhov, Yu. D. Shenin, and V. A. Kolodyaznaya, Izv. SPbGTI(TU), No. 23, 34 – 38 (2014).Google Scholar
  62. 62.
    V. V. Belakhov, A. V. Garabadzhiu, V. A. Kolodyaznaya, and O. V. Topkova, Khim-farm. Zh., 50(3), 7 – 15 (2016).Google Scholar
  63. 63.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, Khim.-farm. Zh., 44(9), 19 – 25 (2010).Google Scholar
  64. 64.
    V. V. Belakhov and B. I. Ionin, in: Proceedings of the Xth International Scientific-Practical Conference “Innovation in Science” [in Russian], Part 1, Sibirskaya Assotsiatsiya Konsul’tantov, Novosibirsk (2012), pp. 20 – 24.Google Scholar
  65. 65.
    V. V. Belakhov, B. I. Ionin, and V. A. Kolodyaznaya, in: Progress in Medical Mycology [in Russian], XI, National Academy of Mycology, Moscow (2013), pp. 302 – 304.Google Scholar
  66. 66.
    M. A. Shneider, Mol. Genet. Mikrobiol. Virusol., No. 5, 41 – 46 (1984).Google Scholar
  67. 67.
    M. A. Shneider and N. P. Chizhov, Vopr. Virusol., 31(1), 18 – 31 (1986).Google Scholar
  68. 68.
    W. Wang, et al., US Pat. 8,217,013, Jul. 10, 2012; Chem. Abstr., 150, 206299v (2009).Google Scholar
  69. 69.
    J. Lamontagne, C. Mills, R. Mao, et al., Antiviral Res., 98(1), 19 – 26 (2013).Google Scholar
  70. 70.
    J. Feng, M. Weitner, W. Shi, et al., Antibiotics (Basel, Switz.), 4(3), 397 – 410 (2015).Google Scholar
  71. 71.
    P. Vaishnav and A. L. Demain, Biotechnol. Adv., 29(2), 223 – 229 (2011).Google Scholar
  72. 72.
    Y. Chen, S. Wang, and X. Lu, Blood, 117(23), 6392 – 6403 (2011).Google Scholar
  73. 73.
    M. Altendorfer, R. Mario, F. Sasse, et al., Org. Biomol. Chem., 11(13), 2116 – 2139 (2013).Google Scholar
  74. 74.
    S. Sheikh, A. Sturzu, H. Kalbacher, et al., Med. Chem. (Sharjah, United Arab Emirates), 10(4), 348 – 354 (2014).Google Scholar
  75. 75.
    S. Sarkar, A. Doering, F. J. Zemp, et al., Nat. Neurosci., 17(1), 46 – 55 (2014).Google Scholar
  76. 76.
    T. Meszaros, A. I. Csincsi, B. Uzonyi, et al., Nanomedicine (N. Y., NY, U. S.), 12(4), 1023 – 1031 (2016).Google Scholar
  77. 77.
    Y. Kaneo, K. Taguchi, T. Tanaka, and S. Yamamoto, J. Drug Delivery Sci. Technol., 24(4), 344 – 351 (2014).Google Scholar
  78. 78.
    V. Strenger, A. Meinitzer, J. Donnerer, et al., J. Antimicrob. Chemother, 69(9), 2522 – 2526 (2014).Google Scholar
  79. 79.
    T. Meszaros, G. Szenasi, L. Rosivall, et al., Eur. J. Nanomed., 7(3), 257 – 262 (2015).Google Scholar
  80. 80.
    V. Leonard, R. V. Alasino, I. D. Bianco, et al., Curr. Drug Delivery, 12(4), 406 – 414 (2015).Google Scholar
  81. 81.
    K. M. Wasan, O. Sivak, K. Bartlett, et al., Drug Dev. Ind. Pharm., 41(9), 1425 – 1430 (2015).Google Scholar
  82. 82.
    Y. Ohata, Y. Tomita, K. Suzuki, et al., Drug Metab. Pharmacokinet., 30(6), 400 – 409 (2015).Google Scholar
  83. 83.
    M. Hagihara, Y. Yamagishi, J. Hirai, et al., BMC Res. Notes, 8, 510/1 – 510/4 (2015).Google Scholar
  84. 84.
    N. Itoh, E. Yamamoto, T. Santa, et al., Pharm. Res., 33(6), 1440 – 1446 (2016).Google Scholar
  85. 85.
    V. Colapicchioni, M. Tilo, L. Digiacomo, et al., Int. J. Biochem. Cell Biol., 75, 180 – 187 (2016).Google Scholar
  86. 86.
    J. A. Jackman, T. Meszaros, T. Fulop, et al., Nanomedicine (N. Y., NY, U. S.), 12(4), 933 – 943 (2016).Google Scholar
  87. 87.
    N. R. Stone, T. Bicanic, R. Salim, and W. Hope, Drugs, 76(4), 485 – 500 (2016).Google Scholar
  88. 88.
    F. Saliba, V. Delvart, P. Ichai, et al., Med. Mycol., 51, No. 2, 155 – 163 (2013).Google Scholar
  89. 89.
    S. Mignani, S. El. Kazzouli, M. Bousmina, and J. P. Majoral, Adv. Drug Delivery Rev., 65(10), 1316 – 1330 (2013).Google Scholar
  90. 90.
    D. R. Serrano, M. P. Ballesteros, A. G. Schatzlein, et al., Pharm. Nanotechnol., 1(4), 250 – 258 (2013).Google Scholar
  91. 91.
    D. M. Casa, T. C. M. M. Carraro, L. E. Alves de Camargo, et al., J. Nanosci. Nanotechnol., 15(1), 848 – 854 (2015).Google Scholar
  92. 92.
    G.-L. M. Chong, W. W. J. van de Sande, G. J. H. Dingemans, et al., J. Clin. Microbiol., 53(3), 868 – 874 (2015).Google Scholar
  93. 93.
    Y. M. Brustoloni, R. V. Cunha, L. Z. Consolo, et al., Infection (Munich, Ger.), 38(4), 261 – 267 (2010).Google Scholar
  94. 94.
    C. Cifani, S. Constantino, M. Massi, and L. Berrino, Acta Bio Med. Atenei Parmensis, 83(2), 154 – 163 (2012).Google Scholar
  95. 95.
    C. M. Santos, R. Barbosa de Oliveira, V. T. Arantes, et al., J. Biomed. Nanotechnol., 8(2), 322 – 329 (2012).Google Scholar
  96. 96.
    C. C. Pupe, M. Villardi, C. R. Rodriges, et al., Int. J. Nanomed., 6, 2581 – 2590 (2011).Google Scholar
  97. 97.
    F. F. Campos, A. C. Calpena-Campmany, G. R. Deldago, et al., J. Pharm. Sci., 101(10), 3739 – 3752 (2012).Google Scholar
  98. 98.
    M. A. Khan, A. Aljarbou, A. Khan, and M. Owais, FEMS Immunol. Med. Microbiol., 66(1), 88 – 97 (2012).Google Scholar
  99. 99.
    D. Marin-Quintero, F. Fernandez-Campos, A. C. Calpena-Campmany, et al., J. Pharm. Sci., 102(11), 4015 – 4023 (2013).Google Scholar
  100. 100.
    F. Fernandes-Campos, B. C. Naveros, O. L. Serano, et al., Mycoses, 56(1), 70 – 81 (2013).Google Scholar
  101. 101.
    C. Martin, W. L. Low, A. Gupta, et al., in: Advances in Liposomes Research, Nova Science Publishers, Inc., New York (2014), pp. 27 – 61.Google Scholar
  102. 102.
    L. H. Samein, Int. J. Pharm. Pharm. Sci., 6(2), 592 – 597 (2014).Google Scholar
  103. 103.
    H. C. Nwuke, I. T. Nzekwe, C. O. Agubata, et al., Int. J. Pharm. Sci. Res., 6(2), 624 – 629 (2015).Google Scholar
  104. 104.
    O. Dumitriu-Buzia, N. Mardare, and C. Diaconu, Rev. Chim. (Bucharest, Rom.), 67(2), 232 – 235 (2016).Google Scholar
  105. 105.
    Z. Drulis-Kawa and A. Dorotkiewicz-Jach, Int. J. Pharm., 387(1–2), 187 – 198 (2010).Google Scholar
  106. 106.
    S. R. Naik, S. K. Desai, P. D. Shah, and S. M. Wala, Recent Pat. Inflammation Allergy Drug Discovery, 7(3), 202 – 214 (2013).Google Scholar
  107. 107.
    I. P. Kaur and S. Kakkar, Expert Opin. Drug Delivery, 7(11), 1303 – 1327 (2010).Google Scholar
  108. 108.
    J. P. Barrett, K. A. Vardulaki, C. Conlon, et al., Clin. Ther., 25(5), 1295 – 1320 (2003).Google Scholar
  109. 109.
    J. H. Rex and S. Arikan, Expert Opin. Emerging Drugs, 7(1), 3 – 32 (2002).Google Scholar
  110. 110.
    V. P. Torchilin, Nat. Rev. Drug Discovery, 4(2), 142 – 160 (2005).Google Scholar
  111. 111.
    I. A. Yamskov, A. N. Kuskov, K. K. Babievskii, et al., Prikl. Biokhim. Mikrobiol., 44(6), 688 – 693 (2008).Google Scholar
  112. 112.
    R. D. Seifulla, Pharmacology of Liposomal Preparations [in Russian], Globus Kontinental’, Moscow (2010).Google Scholar
  113. 113.
    V. Torchilin and V.Weissig, Liposomes: A Practical Approach, 2nd Ed., Oxford University Press, Oxford (2003).Google Scholar
  114. 114.
    T. A. ElBayoumi and V. P. Torchilin, in: Methods in Molecular Biology, Vol. 605, V. Weissig (ed.), Humana Press Inc., Totowa, NJ, USA [Liposomes, 1, 1 – 27 (2010)].Google Scholar
  115. 115.
    J. J. Torrado, R. Espada, M. P. Ballesteros, and S. Torrado-Santiago, J. Pharm. Sci., 97(7), 2405 – 2425 (2008).Google Scholar
  116. 116.
    C. P. Poole and F. J. Owens, Introduction to Nanotechnology, J. Wiley, Hoboken, NJ (2003) [Russian translation, Tekhnosfera, Moscow (2007), pp. 271 – 290].Google Scholar
  117. 117.
    E. Gazit, Nanobiotechnology: Unlimited Prospects for Development [in Russian], Nauchnyi Mir, Moscow (2011), pp. 83 – 91.Google Scholar
  118. 118.
    M. H. Fulekar, Nanotechnology: Importance and Applications, I. K. International Publishing House Pvt. Ltd., New Delhi (2010), pp. 175 – 182.Google Scholar
  119. 119.
    V. I. Balabanov, Nanotechnology. Science of the Future [in Russian], Eksmo, Moscow (2009).Google Scholar
  120. 120.
    A. Lamprekht (ed.), Nanodrugs. Drug Delivery Concepts in Nanoscience [in Russian], Nauchnyi Mir, Moscow (2010).Google Scholar
  121. 121.
    C.-M. Lin and T.-Y. Lu, Recent Pat. Nanotechnol., 6(2), 105 – 113 (2012).Google Scholar
  122. 122.
    S. Jayronia, A. Hardenia, and S. Jain, World J. Pharm. Res., 3(1), 295 – 310 (2014).Google Scholar
  123. 123.
    T. da Ros and F. Cataldo, Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Springer, Amsterdam (Netherlands) (2013).Google Scholar
  124. 124.
    S. Kwatra, Int. J. Drug Dev. Res., 5(1), 1 – 10 (2013).Google Scholar
  125. 125.
    V. Rani, J. Chem. Pharm. Res., 7(7), 216 – 227 (2015).Google Scholar
  126. 126.
    X. Zhu, M. Sollogoub, and Y. Zhang, Eur. J. Med. Chem., 115, 438 – 452 (2016).Google Scholar
  127. 127.
    J.-F. Nierengarten and F. Langa, Fullerenes: Principles and Applications, Royal Society of Chemistry, Cambridge, UK (2011).Google Scholar
  128. 128.
    D. Iglesias, S. Bosi, M. Melchionna, et al., Curr. Topics Med. Chem. (Sharjah, United Arab Emirates), 16(18), 1976 – 1989 (2016).Google Scholar
  129. 129.
    T. A. Kolesnikova, B. N. Khlebtsov, D. G. Shchukin, and D. A. Gorin, Ross. Nanotekhnol., 3(9), 74 – 83 (2008).Google Scholar
  130. 130.
    M. A. Petrukhina and L. T. Scott (eds.), Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry, John Wiley & Sons, New York (2011).Google Scholar
  131. 131.
    E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics, CRC Press (Taylor & Francis Group), Boca Raton, FL, USA (2011).Google Scholar
  132. 132.
    K. V. Koltover, in: Advances in Materials Science Research, 1, M. C. Wythers (ed.), Nova Science Publishers, New York (2012), pp. 259 – 275.Google Scholar
  133. 133.
    S. Chakrabarty, S. Choudhary, A. Doshi, et al., Adv. Synth. Catal., 356(10), 2135 – 2196 (2014).Google Scholar
  134. 134.
    A. A. Popov, S. Yang, and L. Dunsch, Chem. Rev., 113(8), 5989 – 6113 (2013).Google Scholar
  135. 135.
    W. Luther and A. Zweck (eds.), Safety Aspects of Engineered Nanomaterials, CRC Press (Taylor & Francis Group), Boca Raton, FL, USA (2013), p. 385.Google Scholar
  136. 136.
    V. Rao, Appl. Biosaf., 19(1), 11 – 19 (2014).Google Scholar
  137. 137.
    B. Fadeel (ed.), Handbook of Safety Assessment of Nanomaterials: From Toxicological Testing to Personalized Medicine, CRC Press (Taylor & Francis Group), Boca Raton, FL, USA (2015).Google Scholar
  138. 138.
    V. Srivastava, D. Gusain, and Y. C. Sharma, Ind. Eng. Chem. Res., 54(24), 6209 – 6233 (2015).Google Scholar
  139. 139.
    K. Bhattacharya, S. P. Mukherjee, A. Gallud, et al., Nanomedicine (N. Y., NY, U. S.), 12(2), 333 – 351 (2016).Google Scholar
  140. 140.
    Z. Li, Z. Liu, H. Sun, and C. Gao, Chem. Rev., 115, No. 15, 7046 – 7117 (2015).Google Scholar
  141. 141.
    A. Bhandari, A. N. Naik, and S. Lewis, Syst. Rev. Pharm., 4(1), 20 – 25 (2013).Google Scholar
  142. 142.
    I. F. Uchegbu and A. Siew, J. Pharm. Sci., 102(2), 305 – 310 (2013).Google Scholar
  143. 143.
    J. J. Torrado, D. R. Serrano, and I. F. Uchegbu, Ther. Delivery, 4(1), 9 – 12 (2013).Google Scholar
  144. 144.
    D. R. Serrano, M. P. Ballesteros, A. G. Schatzlein, et al., Pharm. Nanotechnol., 1(4), 250 – 258 (2013).Google Scholar
  145. 145.
    M. A. Bianco, M. Gallarate, M. Trotta, and L. Battaglia, J. Drug Delivery Sci. Technol., 20(3), 187 – 191 (2010).Google Scholar
  146. 146.
    N. Xu, J. Gu, Y. Zhu, et al., Int. J. Nanomed., 6, 905 – 913 (2011).Google Scholar
  147. 147.
    C. D. Rodrigues, D. M. Casa, L. F. Dalmolin, et al., Curr. Nanosci., 29(5), 594 – 598 (2013).Google Scholar
  148. 148.
    N. Pippa, M. Mariaki, S. Pispas, and C. Demetzos, Int. J. Pharm., 473(1–2), 80 – 86 (2014).Google Scholar
  149. 149.
    K. L. Nagarsekar, C. N. Galdhar, R. V. Gaikwad, et al., Drug Delivery Lett., 4, No. 3 208 – 220 (2014).Google Scholar
  150. 150.
    D. M. Casa, T. C. M. M. Carraro, L. E. Alves de Camargo, et al., J. Nanosci. Nanotechnol., 15(1), 848 – 854 (2015).Google Scholar
  151. 151.
    A. C. O. Souza, A. L. Nascimento, N. M. Vasconcelos, et al., Eur. J. Med. Chem., 95, 267 – 276 (2015).Google Scholar
  152. 152.
    X. Tang, R. Jiao, C. Xie, et al., Int. J. Clin. Exp. Med., 8(4), 5150 – 5162 (2015).Google Scholar
  153. 153.
    A. Ahmad, Y. Wei, F. Syed, et al., Microb. Pathog., 99, 271 – 281 (2016).Google Scholar
  154. 154.
    T. C. M. M. Carraro, N. M. Khalil, and R. M. Mainardes, Pharm. Dev. Technol., 21(2), 140 – 146 (2016).Google Scholar
  155. 155.
    D. Butani, C. Yewale, and A. Misra, Colloids Surf., B, 139, 17 – 24 (2016).Google Scholar
  156. 156.
    K. Tutai, R. Szlazak, K. Szalapata, et al., Nanomedicine (N. Y., NY, U. S.) (Nanotechnol. Biol. Med.), 12(4), 1095 – 1103 (2016).Google Scholar
  157. 157.
    M. Karimi, N. Solati, A. Ghasemi, et al., Expert Opin. Drug Delivery, 12(7), 1089 – 1105 (2015).Google Scholar
  158. 158.
    X. Tang, Y. Liang, Y. Zhu, et al., Int. J. Nanomed., 10, 6227 – 6241 (2015).Google Scholar
  159. 159.
    D. M. Casa, T. K. Karam, A. C. S. Alves, et al., J. Nanosci. Nanotechnol., 15(2), 10183 – 10188 (2015).Google Scholar
  160. 160.
    I. Javed, S. Z. Hussein, I. Ullah, et al., J. Mater. Chem. B, 3(42), 8359 – 8365 (2015).Google Scholar
  161. 161.
    X. Tang, J. Dai, J. Xie, et al., Nanoscale Res. Lett., 10(1), 1 – 11 (2015).Google Scholar
  162. 162.
    Q. Zia, A. A. Khan, Z. Swaleha, and M. Owais, Int. J. Nanomed., 10, 1769 – 1790 (2015).Google Scholar
  163. 163.
    K. Shirkhani, I. Teo, D. Armstrong-James, and S. Shaunak, Nanomedicine (N. Y., NY, U. S.), 11(5), 1217 – 1226 (2015).Google Scholar
  164. 164.
    D. R. Serrano, A. Lalatsa, M. A. Dea-Ayuela, et al., Mol. Pharm., 12(2), 420 – 431 (2015).Google Scholar
  165. 165.
    R. Khalil, M. Kassem, A. A. Elbary, et al., Int. J. Pharm. Sci. Res., 4(6), 2292 – 2300 (2013).Google Scholar
  166. 166.
    A. Melkoumov, M. Goupil, F. Louhichi, et al., J. Antimicrob. Chemother, 68(9), 2099 – 2105 (2013).Google Scholar
  167. 167.
    G. Badea, A. G. Bors, I. Lacatusu, et al., C. R. Chim., 18(6), 668 – 677 (2015).Google Scholar
  168. 168.
    C. P. Reis, L. V. Roque, M. Babtista, and P. Rijo, Pharm. Dev. Technol., 21(3), 282 – 287 (2016).Google Scholar
  169. 169.
    M. Mobasheri, H. Attar, A. M. R. Sorkhabadi, et al., Molecules, 21(1), 1 – 26 (2016).Google Scholar
  170. 170.
    K. Niemirowicz, B. Durnas, G. Tokajur, et al., Nanomedicine (N. Y., NY, U. S.) (Nanotechnol., Biol. Med.), 12(4), 2395 – 2404 (2016).Google Scholar
  171. 171.
    A. A. Kassem, A. M. Mohsen, R. S. Ahmed, and T. M. Essam, J. Mol. Liq., 218, 219 – 232 (2016).Google Scholar
  172. 172.
    C. Bouaoud, S. Xu, E. Mendes, et al., J. Appl. Polym. Sci., 133(31), 1 – 10 (2016).Google Scholar
  173. 173.
    H. Chandasana, Y. D. Prasad, Y. S. Chhonker, et al., Int. J. Pharm., 477(1–2), 317 – 325 (2014).Google Scholar
  174. 174.
    V. V. Belakhov, A. V. Garabadzhiu, and V. A. Kolodyaznaya, in: Progress in Medical Mycology [in Russian], Proceedings of the Third International Mycological Forum, 14, Izd. National Academy of Mycology, Moscow (2015), pp. 334 – 337.Google Scholar
  175. 175.
    N. Y. Villa, P. Moussatche, S. G. Chamberlin, et al., J. Mol. Evol., 73(3–4), 134 – 152 (2011).Google Scholar
  176. 176.
    M. S. A. Khan and I. Ahmad, Appl. Microbiol. Biotechnol. 90(3), 1083 – 1094 (2011).Google Scholar
  177. 177.
    A. Devprakash, P. Singh, K. K. Srinvasan, et al., J. Pharm. Res. Opin., 1(3), 85 – 88 (2011).Google Scholar
  178. 178.
    I. V. Ene, C. J. Heilmann, J. Clemens, et al., Proteomics, 12(21), 3164 – 3179 (2012).Google Scholar
  179. 179.
    N. P. Elinov, Probl. Med. Mikol., 6(4), 3 – 8 (2004).Google Scholar
  180. 180.
    N. V. Beloborodova and T. Yu. Vostrikova, Klin. Mikrobiol. Antimikrob. Khimioter., 11(1), 22 – 30 (2009).Google Scholar
  181. 181.
    L. V. Ivanova, E. P. Barantsevich, and E. V. Shlyakhto, Probl. Med. Mikol., 13(1), 14 – 17 (2011).Google Scholar
  182. 182.
    A. B. Yakovlev, Mycosporia trichophytia Favus, OOO Novik, Moscow (2013).Google Scholar
  183. 183.
    D. Sanglard and T. C. White, in: Molecular Principles of Fungal Pathogenesis, Chap, 14, J. Heitman (ed.), American Society for Microbiology, Washington (2006), pp. 197 – 212.Google Scholar
  184. 184.
    I. Leven-Reisman, I. Ronin, O. Gefen, et al., Science, 355(6327), 826 – 830 (2017).Google Scholar
  185. 185.
    Z. A. Kanafani and J. R. Perfect, Clin. Infect. Dis., 46, 120 – 128 (2008).Google Scholar
  186. 186.
    K. W. Gammelsrud, B. L. Lindstad, and P. Gaustad, Med. Mycol., 50(6), 619 – 625 (2012).Google Scholar
  187. 187.
    D. Sanglard, A. Coste, and S. Ferrari, FEMS Yeast Res., 9(7), 1029 – 1050 (2009).Google Scholar
  188. 188.
    K. A. Vinogradova, V. G. Bulgakova, A. N. Polin, and P. A. Kozhevin, Antibiot. Khimioter., 58(5–6), 38 – 48 (2013).Google Scholar
  189. 189.
    M. Razzaghi-Abyaneh, M. Shams-Ghahfarokhi, and M. Rai (eds.), Medical Mycology: Current Trends and Future Prospects, CRC Press, Boca Raton, FL, USA (2015).Google Scholar
  190. 190.
    C. M. Hull, N. J. Purdy, and S. C. Moody, Future Microbiol., 9(3), 307 – 325 (2014).Google Scholar
  191. 191.
    A. M. Borman, R. Petch, C. J. Linton, M. D. Palmer, et al., J. Clin. Microbiol., 46(3), 933 – 938 (2008).Google Scholar
  192. 192.
    A. Espinel-Ingroff, E. Jonhson, H. Hockey, and P. Troke, J. Antimicrob. Chemother, 61(3), 616 – 620 (2008).Google Scholar
  193. 193.
    S. Sanchez and A. L. Demain (eds.), Antibiotics: Current Innovations and Future Trends, Caister Academic Press, Poole, UK (2015).Google Scholar
  194. 194.
    J. H. Shin, M.-N. Kim, S. J. Sook, et al., J. Clin. Microbiol., 50(6), 1852 – 1855 (2012).Google Scholar
  195. 195.
    A. Vartak, V. Mutalik, R. R. Parab, et al., Lett. Appl. Microbiol., 58(6), 591 – 596 (2014).Google Scholar
  196. 196.
    M. M. Tawfick and A. S. Gad, Am. J. Drug Discovery Dev., 4(1), 32 – 40 (2014).Google Scholar
  197. 197.
    D. W. Denning and M. J. Bromley, Science, 347(6229), 1414 – 1416 (2015).Google Scholar
  198. 198.
    I. P. Kaur and S. Kakkar, Expert Opin. Drug Delivery, 7(11), 1303 – 1327 (2010).Google Scholar
  199. 199.
    A. M. S. Al-Hatmi, M. Mirabolfathy, F. Hagen, et al., Fungal Biol., 120(2), 265 – 278 (2016).Google Scholar
  200. 200.
    S. S. Goncalves, A. C. R. Souza, and A. Chowdhary, Mycoses, 59(4), 198 – 219 (2016).Google Scholar
  201. 201.
    M. Slisz, B. Cybulska, J. Grzybowska, et al., J. Antibiot., 60(7), 436 – 446 (2007).Google Scholar
  202. 202.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, in: Pharmacy from Century to Century. Proceedings of a Scientific-Practical Conference, Part IV, Izd. SPGKhFA, St. Petersburg (2004), pp. 104 – 109.Google Scholar
  203. 203.
    Yu. D. Shenin and V. V. Belakhov, in: Proceedings of an International Scientific-Practical Conference Dedicated to the 85 th Birthday of the Academy [in Russian], Izd. SPGKhFA, St. Petersburg (2004), pp. 322 – 324.Google Scholar
  204. 204.
    Yu. D. Shenin, V. V. Belakhov, and R. A. Araviiskii, in: Current State and Optimization Pathway for Public Drug Supply. Proceedings of a Russian Scientific-Practical Conference [in Russian], Izd. Perm State Pharmaceutical Academy, Perm (2008), pp. 395 – 397.Google Scholar
  205. 205.
    V. V. Belakhov, Y. D. Shenin, R. A. Araviisky, and B. I. Ionin, in: Strategic Problems of World’s Science, Proceeding of V International Scientific and Practical Conference [in Russian], Nauka i Studia, Przemysl, Poland (2009), pp. 7 – 10.Google Scholar
  206. 206.
    V. V. Belakhov and B. I. Ionin, in: Scientific Search in the Modern World, Proceedings of the IInd International Scientific-Practical Conference [in Russian], Pero, Moscow (2012), pp. 45 – 50.Google Scholar
  207. 207.
    V. V. Belakhov, Y. D. Shenin, A. V. Garabadzhiu, and B. I. Ionin, in: Modern Scientific Achievements, Proceedings of IX International Scientific and Practical Conference, Education and Science, Prague, Czech Republic (2013), pp. 94 – 101.Google Scholar
  208. 208.
    V. A. Kolodyaznaya, Yu. D. Shenin, V. V. Belakhov, and B. I. Ionin, in: Proceedings of 17th European Carbohydrate Symposium, Tel-Aviv, Israel (2013), p. 107.Google Scholar
  209. 209.
    V. V. Belakhov, A. V. Garabadzhiu, and V. A. Kolodyaznaya, in: Proceedings of Annual Meeting of the Israel Society for Microbiology, Ramat-Gan, Israel (2015), p. 45.Google Scholar
  210. 210.
    V. V. Belakhov, T. B. Chistyakova, I. A. Smirnov, and A. V. Garabadzhiu, in: Proceedings of 81st Annual Meeting of the Israel Chemical Society, Tel Aviv, Israel (2016), p. 86.Google Scholar
  211. 211.
    WHO Global Strategy for Containment of Antimicrobial Resistance, World Health Organization (WHO), Geneva, Switzerland (2001).Google Scholar
  212. 212.
    N. V. Vasil’eva, N. N. Klimko, and V. A. Tsinzerling, Vestn. Sankt-Peterburg. Med. Akad. Poslediplom. Obraz., 2(4), 5 – 18 (2010).Google Scholar
  213. 213.
    A. Perrella, C. Esposito, O. Perrella, et al., Infect. Dis., 48(2), 161 – 166 (2016).Google Scholar
  214. 214.
    O. A. Cornely, S. Arkan-Akdagli, E. Dannaoui, et al., Clin. Microbiol. Infect., 20(3), 5 – 26 (2014).Google Scholar
  215. 215.
    F. Fernandez-Silva, J. Capilla, E. Mayayo, et al., Int. J. Antimicrob. Agents, 44(2), 136 – 139 (2014).Google Scholar
  216. 216.
    G. Maschmeyer, T. Calandria, N. Singh, et al., Med. Mycol., 47, No. 6, 571 – 583 (2009).Google Scholar
  217. 217.
    M. Nucci, K. A. Marr, M. J. G. T. Vehreschild, et al., Clin. Microbiol. Infect., 20(6), 580 – 585 (2014).Google Scholar
  218. 218.
    A. Kumar, R. Babu, S. Bijulal, et al., J. Clin. Microbiol., 52(11), 4094 – 4099 (2014).Google Scholar
  219. 219.
    A. H. Groll and T. J. Walsh, in: Aspergillus fumigatus and Aspergillosis, Chap. 30, W. J. Steibach (ed.), American Society for Microbiology, Washington (2009), pp. 391 – 415.Google Scholar
  220. 220.
    D. Andes, A. Pascual, and O. Marchetti, Antimicrob. Agents Chemother., 53(1), 24 – 34 (2009).Google Scholar
  221. 221.
    D. P. Kontoyiannis, Am. J. Med., 12(1), S25 – S38 (2012).Google Scholar
  222. 222.
    C. Kobyashi, T. Hanadate, T. Niwa, et al., J. Infect. Chemother., 21(6), 438 – 443 (2015).Google Scholar
  223. 223.
    M. Blatzer, E. Jukic, W. Posch, et al., Antioxid. Redox Signaling, 23(18), 1424 – 1438 (2015).Google Scholar
  224. 224.
    S. Cordoba, M. G. Isla, W. Szusz, et al., Mycoses, 59(6), 351 – 356 (2016).Google Scholar
  225. 225.
    C. Coelho and A. Casadevall, Cell. Microbiol., 18(6), 792 – 799 (2016).Google Scholar
  226. 226.
    T. N. Doan, C. M. Kirkpatrick, P. Walker, et al., J. Antimicrob. Chemother., 71(2), 497 – 505 (2016).Google Scholar
  227. 227.
    A. L. Leal, J. Faganello, A. M. Fuentefria, et al., Mycopathologia, 166(2), 71 – 75 (2008).Google Scholar
  228. 228.
    A. Chakrabarti, S. S. Chatterjee, and M. R. Shivaprakash, Jpn. J. Med. Mycol., 49(3), 165 – 172 (2008).Google Scholar
  229. 229.
    B. P. Mathew and M. Nath, ChemMedChem., 4(3), 310 – 323 (2009).Google Scholar
  230. 230.
    M. S. Ferreira and A. S. Borges, Rev. Soc. Bras. Med. Trop., 42(2), 192 – 198 (2009).Google Scholar
  231. 231.
    D. F. S. Freitas, H. B. de Siqueira, A. S. F. do Valle, et al., Med. Mycol., 50(2), 170 – 178 (2012).Google Scholar
  232. 232.
    G. P. Bisson, M. Molefi, S. Bellamy, et al., Clin. Infect. Dis., 56(8), 1165 – 1173 (2013).Google Scholar
  233. 233.
    J. Manoj, J. Priyanka, V. Shinde, et al., Clin. Pharmacol. Drug Dev., 2(1), 48 – 52 (2013).Google Scholar
  234. 234.
    R. K. Vadlapatla, M. Patel, D. K. Paturi, et al., Expert Opin. Drug Metab. Toxicol., 10(4), 561 – 580 (2014).Google Scholar
  235. 235.
    UNAIDS, WHO, AIDS Epidemic Update: December 2000, Joint United Nations Program on HIV / AIDS, Geneva (2000).Google Scholar
  236. 236.
    N. N. Klimko, Mycoses: Diagnosis and Treatment: Guide for Physicians [in Russian], Vi Dzhi Group, Moscow (2008).Google Scholar
  237. 237.
    N. P. Elinov, N. V. Vasil’eva, A. A. Stepanova, and G. A. Chilina, Candida. Candidiasis. Laboratory Diagnosis [in Russian], KOSTA, St. Petersburg (2010).Google Scholar
  238. 238.
    N. P. Elinov, Probl. Med. Mikol., 12(3), 3 – 9 (2010).Google Scholar
  239. 239.
    C. d’Enfert and B. Hube (eds.), Candida: Comparative and Functional Genomics, Caister Academic Press, Poole, UK (2007).Google Scholar
  240. 240.
    M. Corti, M. Priarone, J. Castrelo, et al., Rev. Soc. Bras. Med. Trop., 47(4), 524 – 527 (2014).Google Scholar
  241. 241.
    J. L. A. Rabjohns, Y.-D. Park, J. Dehdashti, et al., J. Biomol. Screening, 19(2), 270 – 277 (2014).Google Scholar
  242. 242.
    D. R. Boulware, D. B. Meya, C. Muzoora, et al., N. Eng. J. Med., 370(26), 2487 – 2498 (2014).Google Scholar
  243. 243.
    S. Anil, M. Hashem, S. Vellappally, et al., Mycopathologia, 178(3–4), 207 – 215 (2014).Google Scholar
  244. 244.
    K. Kumari, A. Kumar, and P. C. Sharma, Int. J. Pharm. Sci. Res., 5(2), 532 – 547 (2014).Google Scholar
  245. 245.
    A. V. Veselov, Klin. Mikrobiol. Antimicrob. Khimioter., 10(4), 292 – 304 (2008).Google Scholar
  246. 246.
    B. L. Yesudhason and K. Mohanram, J. Clin. Diagn. Res., 9, No. 7, DC14-DC16 (2015).Google Scholar
  247. 247.
    T. K. Ngouana, D. Krasteva, P. Drakulovski, et al., Mycoses, 58(1), 33 – 39 (2015).Google Scholar
  248. 248.
    S. Cordoba, W. Vivot, W. Szusz, et al., Mycopathologia, 179(5–6), 359 – 371 (2015).Google Scholar
  249. 249.
    B. P. Morales, L. Trilles, A. L. Bertho, et al., Mycoses, 58, No. 5, 273 – 279 (2015).Google Scholar
  250. 250.
    D. J. Krysan, Fungal Genet. Biol., 78, 93 – 98 (2015).Google Scholar
  251. 251.
    G. L. Lee, K. L. Woods, L. Clark, et al., AIDS Res. Hum. Retroviruses, 31(9), 889 – 892 (2015).Google Scholar
  252. 252.
    T. R. Rogers, J. Antimicrob. Chemother., 61(1), 35 – 39 (2008).Google Scholar
  253. 253.
    R. D. Nenoff, C. Kruger, H. Grob, et al., Hautarzt: Zeitschrift fur Dematologie, Venerologie, Verwandte Gebiete, 66(7), 522 – 532 (2015).Google Scholar
  254. 254.
    V. V. Belakhov, A. V. Garabadzhiu, V. A. Kolodyaznaya, et al., in: Innovation from Discovery to Application, Proceeding of 250th National Meeting of American Chemical Society (ACS), MEDI 60, ACS, Boston, MA, USA (2015).Google Scholar
  255. 255.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, in: Theoretical and Practical Problems in Development of Modern Science, Proceedings of the First International Scientific-Practical Conference [in Russian], Pero, Moscow (2013), pp. 12 – 16.Google Scholar
  256. 256.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, Khim. Prom-st., 90(3), 128 – 132 (2013).Google Scholar
  257. 257.
    V. V. Belakhov, Yu. D. Shenin, and B. I. Ionin, in: Development Prospects for Scientific Research in the 21 st Century, Proceedings of the First International Scientific-Practical Conference [in Russian], Pero, Moscow (2013), pp. 33 – 38.Google Scholar
  258. 258.
    V. V. Belakhov, Khim. Prom-st., 91(2), 104 – 108 (2014).Google Scholar
  259. 259.
    V. V. Belakhov, A. V. Garabadzhiu, and V. A. Kolodyaznaya, Bull. S.-Petersb. Inst. Technol., No. 30, 31 – 41 (2015).Google Scholar
  260. 260.
    G. Medoff, J. Brajtburg, and G. S. Kobayashi, Annu. Rev. Pharmacol. Toxicol., 23, 303 – 330 (1983).Google Scholar
  261. 261.
    D. Ellis, J. Antimicrob. Chemother., 49(S1), 7 – 10 (2002).Google Scholar
  262. 262.
    F. C. Odds, A. J. P. Brown, and N. A. R. Gow, Trends Microbiol., 11(6), 272 – 279 (2003).Google Scholar
  263. 263.
    M. Baginski, K. Sternal, J. Czub, and E. Borowski, Acta Biochim. Pol., 52(3), 655 – 658 (2005).Google Scholar
  264. 264.
    J. Czub and M. Baginski, J. Phys. Chem., 110, No. 33, 16743 – 16753 (2006).Google Scholar
  265. 265.
    M. Baginski, B. Cybulska, and W. I. Gruszecki, in: Advances in Planar Lipid Bilayers and Liposomes, 3, Chap. 9, A. L. Liu (ed.), Elsevier, Oxford, UK (2006), pp. 269 – 329.Google Scholar
  266. 266.
    A. A. Samedova and Kh. M. Kasumov, Antibiot. Khimioter., 54(11–12), 44 – 52 (2009).Google Scholar
  267. 267.
    Kh. M. Kasumov, Structure and Membrane Function of Polyene Macrolide Antibiotics [in Russian], Nauka, Moscow (2009).Google Scholar
  268. 268.
    K. Hac-Wydro and P. Dynarowicz-Latka, Colloids Surf., B, 53(1), 64 – 71 (2006).Google Scholar
  269. 269.
    D. M. Kaminski, Eur. Biophys. J., 43(10–11), 453 – 467 (2014).Google Scholar
  270. 270.
    T. Yamamoto, Y. Umezawa, H. Tsuchikawa, et al., Bioorg. Med. Chem., 23(17), 5782 – 5788 (2015).Google Scholar
  271. 271.
    P. Kovacic and A. Cooksy, MedChemComm, 3(3), 274 – 280 (2012).Google Scholar
  272. 272.
    Y. Nakagawa, Y. Umegawa, N. Matsushita, et al., Biochemistry, 55(24), 3392 – 3402 (2016).Google Scholar
  273. 273.
    M. N. Preobrazhenskaya, E. N. Olsufyeva, S. E. Solovieva, et al., J. Med. Chem., 52(1), 189 – 196 (2009).Google Scholar
  274. 274.
    B. Trygve, S. Havard, K. F. Degnes, et al., Appl. Environ. Microbiol., 77(18), 6636 – 6643 (2011).Google Scholar
  275. 275.
    A. N. Tevyashova, E. N. Olsufyeva, S. E. Solovieva, et al., Antimicrob. Agents Chemother., 57(8), 3815 – 3822 (2013).Google Scholar
  276. 276.
    G. F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th Ed., Pearson Education Inc., Boston, USA (2009).Google Scholar
  277. 277.
    D. L. Poole and A. K. Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, New York (2010).Google Scholar
  278. 278.
    P. Ponce, A. M. Gutierrez, and J. Rodriguez (eds.), New Applications of Artificial Intelligence, InTech, Rijeka, Croatia (2016).Google Scholar
  279. 279.
    S. Rassel and P. Norvig, Artificial Intelligence. Modern Approach [in Russian], Vil?yams, Moscow (2015).Google Scholar
  280. 280.
    I. G. Sidorkina, Artificial Intelligence Systems [in Russian], KnoRus, Moscow (2011).Google Scholar
  281. 281.
    V. K. Finn, Artificial Intelligence. Methodology of Application and Philosophy [in Russian], Krasand, Moscow (2011).Google Scholar
  282. 282.
    I. E. Bulakh, Yu. E. Lyakh, V. P. Martsenyuk, and I. I. Khaimzon, Medical Informatics [in Russian], Meditsina, Moscow (2012), 426 pp.Google Scholar
  283. 283.
    L. S. Bolotova, Artificial Intelligence Systems. Knowledge- Based Models and Technologies [in Russian], Finansy i Statistika, Moscow (2012).Google Scholar
  284. 284.
    I. P. Korolyuk, Medical Informatics, OOO Ofort, Samara (2012).Google Scholar
  285. 285.
    B. A. Kobrinskii and T. V. Zarubina, Medical Informatics, Akademiya, Moscow (2013).Google Scholar
  286. 286.
    V. P. Omel’chenko and A. A. Demidova, Medical Informatics [in Russian], GEOTAR-Media, Moscow (2016).Google Scholar
  287. 287.
    P. P. Zotov, I. S. Kritsul, and I. M. Mikhalevich, Vrach Inf. Tekhnol., No. 1, 48 – 56 (2014).Google Scholar
  288. 288.
    M. A. Taranik and G. D. Kopanitsa, Vrach Inf. Tekhnol., No. 3, 6 – 12 (2014).Google Scholar
  289. 289.
    I. P. Lukashevich, K. V. Stepanyan, A. K. Popov, and R. Sh. Balugyan, Vrach Inf. Tekhnol., No. 2, 6 – 11 (2015).Google Scholar
  290. 290.
    B. A. Korbinskii, in: Proceedings of the 15 th National Conference on Artificial Intelligence with International Participation [in Russian], Vol. 2, Universum, Smolensk (2016), pp. 259 – 264.Google Scholar
  291. 291.
    T. B. Chistyakova, Yu. I. Shlyago, I. V. Novozhilova, and N. V. Mal’tseva, Intelligent Systems for Technology Design, Control and Training in Multi-facetted Production of Granulated Porous Materials from Disperse Particles, Ser.: Information Technology in the Chemical Industry [in Russian], Izd. SPbGTI(TU), St. Petersburg (2012).Google Scholar
  292. 292.
    T. B. Chistyakova, I. A. Smirnov, and V. V. Belakhov, in: Mathematical Methods in Engineering and Technology (MMTT-29), Collection of Works of the XXIXth International Scientific Conference, Saratov State Technical University [in Russian], St. Petersburg (2016), pp. 173 – 176.Google Scholar
  293. 293.
    V. V. Belakhov, A. V. Garabadzhiu, T. B. Chistyakova, et al., in: Proceedings of the 82 nd Annual Meeting of the Israel Chemical Society, Tel-Aviv, Israel (2017), p. 107.Google Scholar
  294. 294.
    V. V. Belakhov, T. B. Chistyakova, A. V. Garabadzhiu, et al., in: Modern Mycology in Russia, Proceedings of the IVth Convention of Mycologists in Russia [in Russian], XVI, National Academy of Mycology, Moscow (2017), pp. 214 – 216.Google Scholar
  295. 295.
    T. B Chistyakova, R. V. Makaruk, E. E. Musayev, and V. V. Belakhov, in: Proceedings of the XXth International Conference on Soft Computing and Measurements, St. Petersburg Electrotechnical University, St. Petersburg (2017), pp. 516 – 518.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Belakhov
    • 1
    Email author
  • A. V. Garabadzhiu
    • 2
  • T. B. Chistyakova
    • 2
  1. 1.Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Laboratory of Molecular PharmacologySt. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations