Pharmaceutical Chemistry Journal

, Volume 52, Issue 1, pp 8–14 | Cite as

Multidrug Resistance Reversal Activity of Some New Dihydropyridines Studied by IN SITU Single-Pass Intestinal Perfusion (SPIP) Method in Rat

  • K. Sirisha
  • G. Achaiah
  • N. Prasad
  • S. Bhasker
  • L. Umachander
  • V. Malla Reddy
Article
  • 1 Downloads

P-glycoprotein (P-gp) mediated efflux affects the pharmacokinetics of several drugs. By analogy to verapamil, 1,4-dihydropyridines (DHPs) have been widely studied as P-gp inhibitors. Previously, we have reported on two new DHPs: IA1(A) and IIA5(B) as inhibitors of human MRP1, an efflux protein closely related to P-gp. The aim of the present study was to investigate the inhibitory effects of these two compounds on intestinal P-gp using the method of in situ single-pass intestinal perfusion (SPIP) in rat. According to this, the intestinal absorption of zidovudine (a P-gp substrate) was studied in anaesthetized rat jejunum in the absence and presence of DHPs IA1(A) and IIA5(B) (2 mg/kg). Verapamil (0.8 mg/kg), a well-known P-gp inhibitor, was employed as a standard. Zidovudine solution (200 ig/mL) in phosphate buffer (pH 7.4) was perfused through the jejunal segment, the perfusate concentrations were quantified by HPLC, and the permeability coefficient (Peff) and fraction absorbed (Fabs) were calculated. Phenol red was used as a non-absorbable marker to correct water flux through the segment. In rats pretreated with compounds IA1 and IIA5, Peff and Fabs of zidovudine were found to be 0.1669 ± 0.12 cm/sec, 0.2035 ± 0.18 and 0.2798 ± 0.12 cm/sec, 0.3015 ± 0.14, respectively, and were comparable to those of the standard (Peff = 0.462713 ± 0.3 cm/sec, Fabs = 0.511835 ± 0.14). The differences between IA1, IIA5 and the standard were evaluated using ANOVA and found to be statistically significant (P < 0.05). Compounds IA1 and IIA5 have a modulating effect on intestinal P-gp. Compound IIA5 was relatively more potent P-gp inhibitor and, quite interestingly, the results were in agreement with our earlier in silico and in vitro studies.

Keywords

P-glycoprotein multidrug resistance, 1,4-dihydropyridines in situ SPIP 

Notes

Acknowledgements

The authors are grateful to UCPSc, Kakatiya University (Warangal, TS, India) for providing the facilities. One of the authors (K. S.) is thankful to the University Grants Commission (UGC, New Delhi, India) for the award of SRF and to the management of Vaagdevi College of Pharmacy (Warangal, TS, India) for their encouragement.

References

  1. 1.
    M. K. Arunasree and R. Arshad, Antimicrob. Agents Chemother., 55, 439 – 442 (2011).CrossRefGoogle Scholar
  2. 2.
    E. Teodori, S. Dei, C. Martelli, et al., Curr. Drug Targets, 7, 893 – 909 (2006).CrossRefPubMedGoogle Scholar
  3. 3.
    C. F. Higgins, Nature, 446, 749 – 757 (2007).CrossRefPubMedGoogle Scholar
  4. 4.
    J. P. Gillet and M. M. Gottesman, Methods Mol. Biol., 596, 47 – 76 (2010).CrossRefPubMedGoogle Scholar
  5. 5.
    T. Tsuruo, H. Iida, M. Nojiri, et al., Cancer Res., 43, 2905 – 2910 (1983).PubMedGoogle Scholar
  6. 6.
    P. A. Philip, S. Joel, S. C. Monkman, et al., Brit. J. Cancer, 65, 267 – 270 (1992).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    A. Zarrin, A. R. Mehdipour, and R. Miri, Chem. Biol. Drug Des., 76, 369 – 381 (2010).CrossRefPubMedGoogle Scholar
  8. 8.
    H. Engi, H. Sakagami, M. Kawase, et al., In Vivo, 20, 637 – 644 (2006).PubMedGoogle Scholar
  9. 9.
    X. F. Zhou, R. A. Coburn, and M. E. Morris, J. Pharm. Sci., 94, 2256 – 2265 (2005).CrossRefPubMedGoogle Scholar
  10. 10.
    A. Shah, J. Bariwal, J. Molnar, et al., Top. Heterocycl. Chem., 15, 201 – 252 (2008).Google Scholar
  11. 11.
    A. T. Fojo, K. Ueda, D. J. Slamon, et al., Proc. Natl. Acad. Sci. USA, 84, 265 – 269 (1987). CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    M. V. S. Varma, M. Sarkar, et al., J. Chromatogr. B, 816, 243 – 249 (2005).CrossRefGoogle Scholar
  13. 13.
    S. V. Ambudkar, S. Dey, C. A. Hrycyna, et al., Annu. Rev. Pharmacol. Toxicol., 39, 361 – 398 (1999).CrossRefPubMedGoogle Scholar
  14. 14.
    R. L. Linardi and C. C. Natalini, Ciência Rural, Santa Maria, 36, 336 – 341 (2006).CrossRefGoogle Scholar
  15. 15.
    N. Akhtar, A. Ahad, R. K. Khar, et al., Expert Opin. Ther. Pat., 21, 561 – 576 (2011).CrossRefPubMedGoogle Scholar
  16. 16.
    T. Terao, E. Hisanaga, Y. Sai, et al., J. Pharm. Pharmacol., 48, 1083 – 1089 (1996).CrossRefPubMedGoogle Scholar
  17. 17.
    B. Greiner, M. Eichelbaum, P. Fritz, et al., J. Clin. Invest., 104, 147 – 153 (1999).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    N. Nagare, A. Damre, K. S. Singh, et al., Indian J. Pharm. Sci., 72, 625 – 629 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    L. Barthe, J. Woodley, and G. Houin, Fund. Clin. Pharmacol., 13, 154 – 168 (1999).CrossRefGoogle Scholar
  20. 20.
    N. Prasad, G. Dinesh, and B. Sathish Kumar, Eur. J. Pharm. Sci., 44, 27 – 31 (2011).CrossRefGoogle Scholar
  21. 21.
    N. F. Ho, J. Y. Park, P. F. Ni, et al., in: Animal Models for Oral Drug Delivery in Man, W. Crouthamel and A. Sarapu (eds.), Amer. Pharm. Assoc., Washington DC (1983), pp. 27 – 106.Google Scholar
  22. 22.
    H. H. Lu, J. Thomas, and D. Fleisher, J. Pharm. Sci., 81, 21 – 25 (1992).CrossRefPubMedGoogle Scholar
  23. 23.
    U. Fagerholm, M. Johansson, and H. Lennernas, Pharm. Res., 13, 1336 – 1342 (1996).CrossRefPubMedGoogle Scholar
  24. 24.
    B. H. Stewart, O. H. Chan, R. H. Lu, et al., Pharm. Res. 12, 693 – 699 (1995).CrossRefPubMedGoogle Scholar
  25. 25.
    K. Sirisha, M. Chandra Shekhar, K. Uma Sankar, et al., Bioorg. Med. Chem., 19, 3249 – 3254 (2011).CrossRefPubMedGoogle Scholar
  26. 26.
    H. Saitoh and B. J. Aungst, Pharm. Res., 12, 1304 – 1310 (1995).CrossRefPubMedGoogle Scholar
  27. 27.
    Guidelines for Acute Oral Toxicity of Chemicals, Test No. 425 (Adopted 3 October 2008), Organization for Economic Cooperation and Development (OECD).Google Scholar
  28. 28.
    D. Fleisher, K. C. Johnson, B. H. Stewart, et al., J. Pharm. Sci., 75, 934 – 939 (1986).CrossRefPubMedGoogle Scholar
  29. 29.
    L. Salphati, K. Childers, L. Pan, et al., J. Pharm. Pharmacol., 53, 1007 – 1013 (2001).CrossRefPubMedGoogle Scholar
  30. 30.
    P. Zakeri-Milania, V. Hadi, T. Hosnieh, et al., J. Pharm. Pharmaceut. Sci., 10, 368 – 379 (2007).Google Scholar
  31. 31.
    N. Sunil Thomas and P. Ramesh, Eur. J. Pharm. Sci., 18, 71 – 79 (2003).CrossRefGoogle Scholar
  32. 32.
    R. Sandstrom and H. Lennernas, Drug Metab. Dispos., 27, 951 – 955 (1999).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Sirisha
    • 1
    • 2
  • G. Achaiah
    • 1
  • N. Prasad
    • 1
  • S. Bhasker
    • 1
  • L. Umachander
    • 1
  • V. Malla Reddy
    • 3
  1. 1.Medicinal Chemistry and DMPK & Clinical Pharmacology Research DivisionsUniversity College of Pharmaceutical Sciences, Kakatiya UniversityWarangalIndia
  2. 2.Medicinal Chemistry Research Division, Vaagdevi College of PharmacyWarangalIndia
  3. 3.R&D Centre, Symed Labs Limited, Unit-V, Phase-I, I. D. A.HyderabadIndia

Personalised recommendations