Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of Electrode Energy Balance on Gas Convective Pattern of a High-Pressure Xenon Short Arc Lamp

  • 38 Accesses

Abstract

The transport of tungsten vapour evaporated from the electrode surfaces of a high-pressure xenon short-arc lamp, which is dominated by the gas convection in the lamp, determines the location and extent of the blackened area on the inner bulb wall. We have investigated factors affecting the vapour transport and other important phenomena related to the gas convection using a unified numerical model. The influence of the lamp operating parameters and also the thermodynamic and transport properties of the gas is discussed. The predicted lamp characteristics and phenomena agree well with experimental results. The gas velocity in the lamp is strongly affected by the Lorentz force and the gas density, which respectively depend on the current and the filling pressure. The viscosity and density of the gas adjacent to the anode surface were found to depend on the anode energy balance and to affect the resistance of the gas flow, which in turn affects the separation point of the gas flow from the anode surface. This indicates that the anode surface temperature, which is determined by the energy balance between the gas and the anode, also affects the blackening location.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Malul A, Nakar D, Feuermann D, Gordon JM (2007) Effectiveness of recycling light in ultra-bright short-arc discharge lamps. Opt Express 15:14194–14201

  2. 2.

    Burm KTAL (2005) Continuum radiation spectroscopy in a high-pressure argon-mercury lamp. J Quant Spectrosc Radiat Transfer 95:93–100

  3. 3.

    Fu L, Leutz R, Ries H (2005) Spectroscopic measurement of radiation of high-pressure mercury discharge lamps. J Appl Phys 97:123302

  4. 4.

    Wang C, Chen T, Li WW, Zha J, Xia WD (2014) Axial magnetic field effects on xenon short-arc lamps. Plasma Sci Technol 16:1096–1099

  5. 5.

    Zalach J, Franke S (2003) Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp. J Appl Phys 113:043303

  6. 6.

    Alexejev A, Flesch P, Mentel J, Awakowicz P (2016) Change of the arc attachment mode and its effect on the lifetime in automotive high intensity discharge lamps. J Appl Phys 120:133301

  7. 7.

    David HS, Casey S, David S, Jay P (2014) Optical safety of comparative theater projectors. Health Phys 106:353–364

  8. 8.

    Gill R, Bush E, Haueter P, Loutzenhiser P (2015) Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns. Rev Sci Instrum 86:125107

  9. 9.

    Benilov MS, Cunha MD (2002) Heating of refractory cathodes by high-pressure arc plasmas: I. J Phys D Appl Phys 35:1736–1750

  10. 10.

    Charrada K, Zissis G, Stambouli M (1996) A study of the convective flow as a function of external parameters in high-pressure mercury lamps. J Phys D Appl Phys 29:735–760

  11. 11.

    Beks ML, Haverlag M, Mullen JJAM (2008) A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide. J Phys D Appl Phys 41:1–9

  12. 12.

    Hamida MBB, Charrada K (2013) Contrasting the effect of electric current between vertical and horizontal high-pressure mercury discharge lamps. IEEE Trans Plasma Sci 41:1696–1702

  13. 13.

    Hamida MBB, Charrada K (2012) Contrast the effect of the mass of mercury discharge lamps. IEEE Trans Plasma Sci 40:2065–2072

  14. 14.

    Hamida MBB, Helali H, Araoud Z, Charrada K (2011) Contrast between the vertical and horizontal mercury discharge lamps. Phys Plasmas 18:063506

  15. 15.

    Hajji S, HadjSalah S, Benhalima A, Charrada K, Zissis G (2016) A study of the convective flow as a function of external parameters in a high-pressure metal halide discharge lamp (HgDyI3). Phys Plasmas 23:063522

  16. 16.

    Paul KC, Takemura T, Hiramoto T, Yoshioka M, Igarashi T, Horikawa Y, Tsukamoto T, Sugitani A (2007) Development of a robust 3-D model for HID lamps and comparison of predicted and measured electrode temperatures. IEEE Trans Plasma Sci 35:188–196

  17. 17.

    Maenaka S, Tashiro S, Murphy AB, Fujita K, Tanaka M (2019) Modeling of a xenon short arc lamp considering the behavior of tungsten vapour evaporated from electrodes. J Phys D Appl Phys 52:334001

  18. 18.

    Baeva M, Benilov MS, Almeida NA, Uhrlandt D (2016) Novel non-equilibrium modelling of a DC electric arc in argon. J Phys D Appl Phys 49:245205

  19. 19.

    Paul KC, Takemura T, Matsuno H, Hiramoto T, Dawson F, Gonzalez JJ, Gleizes A, Zissis G, Erraki A, Lavers JD (2004) Predicted results of a HID DC current lamp considering a P-1 radiation model. IEEE Trans Plasma Sci 32:118–126

  20. 20.

    Murphy AB, Tam E (2014) Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. J Phys D Appl Phys 47:295202

  21. 21.

    Flesch P (2006) Light and light sources. Springer, Berlin

  22. 22.

    Park H, Trautmann M, Tanaka K, Tanaka M, Murphy AB (2018) A computational model of gas tungsten arc welding of stainless steel: the importance of considering the different metal vapours simultaneously. J Phys D Appl Phys 51:395202

  23. 23.

    Long NP, Tanaka Y, Uesugi Y (2013) Numerical investigation of the effect of cathode holder shape on hafnium cathode evaporation for an oxygen plasma cutting arc. J Phys D Appl Phys 46:224012

  24. 24.

    Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43:434001

  25. 25.

    Siegel R, Howell J (2002) Thermal radiation heat transfer, 4th edn. Taylor Francis, New York

  26. 26.

    Modest MF (1993) Radiative heat transfer. McGraw-Hill, New York

  27. 27.

    Ushio M, Tanaka M, Lowke JJ (2004) Anode melting from free-burning argon arcs. IEEE Trans Plasma Sci 32:108–117

  28. 28.

    Yang F, Rong M, Wu Y, Murphy AB, Pei J, Wang L, Liu Z, Liu Y (2010) Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker. J Phys D Appl Phys 43:434011

  29. 29.

    Paul KC, Takemura T, Matsuno H, Hiramoto T, Yoshioka M, Igarashi T (2006) Three-dimensional modeling of a direct current operated Hg–Ar lamp. IEEE Trans Plasma Sci 34:254–262

  30. 30.

    Wendelstorf J (2000) Ab initio modeling of thermal plasma gas discharge (electric arcs). PhD Thesis, University of Braunschweig

  31. 31.

    Lowke JJ, Tanaka M (2006) ‘LTE-diffusion approximation’ for arc calculations. J Phys D Appl Phys 39:3634–3643

  32. 32.

    Gao XF, Zhang CW, Wei JJ, Yub B (2010) Performance prediction of an improved air-cooled steam condenser with deflector under strong wind. Appl Therm Eng 30:2663–2669

  33. 33.

    Petrov VA (1972) Measurement of the emissivity of quartz glass. High Temp High Press 4:687–693

  34. 34.

    Touloukian YS (1967) Thermophysical properties of high temperature solid materials. Macmillan, New York

  35. 35.

    Tanaka M, Tashiro S, Satoh T, Murphy AB, Lowke JJ (2008) Influence of shielding gas composition on arc properties in TIG welding. Sci Technol Weld Join 13:225–231

  36. 36.

    Cebeci T, Mosinskis GJ, Smith AMO (2012) Calculation of separation points in incompressible turbulent flows. J Aircr 9:618–624

Download references

Author information

Correspondence to Shinichi Tashiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maenaka, S., Tashiro, S., Murphy, A.B. et al. Influence of Electrode Energy Balance on Gas Convective Pattern of a High-Pressure Xenon Short Arc Lamp. Plasma Chem Plasma Process (2020). https://doi.org/10.1007/s11090-020-10068-0

Download citation

Keywords

  • Xe lamp
  • Metal vapour
  • Local skin friction
  • Shear stress
  • Separation
  • Blackening