Advertisement

Abatement of Tetrafluormethane Using Thermal Steam Plasma

  • O. ŽivnýEmail author
  • M. Hlína
  • A. Serov
  • A. Halinouski
  • A. Mašláni
Original Paper
  • 4 Downloads

Abstract

Perfluorinated compounds (PFCs) increasingly utilized in electronic manufacturing represent a potent source of global warming effect. Because of extremely high stability of PFCs only very high temperature is effective for their destruction. Thermal plasma offers higher destruction and removal efficiency as compared to conventional methods allowing to reach sufficiently high temperature as well as suitable conditions, including high enthalpy and reactive environment for destruction even of the most persistent PFCs. The aim pursued by this work is to apply water and gas stabilized DC-plasma torch for generating steam plasma for efficient abatement of the most persistent PFC, i.e., CF4, and to observe a dependence of destruction and removal efficiency on operational conditions, including concentration of CF4, input arc power of the plasma torch and an influence of an additional gas. The experiments were carried out at 20 kW and 40 kW of torch power in the concentration range 1–20% of CF4 in mixture with both nitrogen and argon and total feed rate 50 L/min in plasma chemical reactor. The mixture with argon exhibit considerably higher destruction efficiency than that with nitrogen. The highest destruction efficiency was attained in the mixture CF4/argon at 40 kW of torch power. Among other gases (CO2, O2, H2) added to CF4 the only hydrogen exhibited a positive effect to destruction performance. It was found an optimal feed rate of additional hydrogen corresponding to the maximum of destruction efficiency.

Keywords

Thermal plasma Steam plasma Tetrafluormethane Abatement 

Notes

Acknowledgements

This work was supported by the Czech Science Foundation (GA CR) under Project No. GC17-10246 J.

References

  1. 1.
    Available at IPCC Fourth Assesment Report: Climate Change (2007) Direct global warming potentials. https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html. Accessed 17 Jun 2019
  2. 2.
    O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to C-F bond. Chem Soc Rev 37:308–319CrossRefGoogle Scholar
  3. 3.
    Abe H, Yoenda M, Fujiwara N (2008) Developments of plasma etching technology for fabricating semiconductor devices. Jpn J Appl Phys 47:1435–1455CrossRefGoogle Scholar
  4. 4.
    Seeley A, Chandler P, Cotte S, Mawle P (2000) Effective PFC gas abatement in a production environment semiconductor. 10th ed FabtechGoogle Scholar
  5. 5.
    Worton DR, Schwander J, Sturges WT et al (2007) Atmospheric trends and radiative forcings of CF4 and C2F6 inferred from firn air. Environ Sci Technol 41:2184–2189CrossRefGoogle Scholar
  6. 6.
    Gibbs MJ, Bakshi V, Lawson K, Pape D, Dolin EJ (2002) PFC emissions from primary aluminium production. IPCC. https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/3_3_PFC_Primary_Aluminium_Production.pdf. Accessed 8 Nov 2019
  7. 7.
    Non-HCFC refrigerant mixture for an ultra-low temperature refrigeration system. US Patent. 6631625B1Google Scholar
  8. 8.
    Kyoto protocol homepage. http://www.kyotoprotocol.com/. Accessed 18 Jun 2019
  9. 9.
  10. 10.
    Regulation (EU) No 517/2014 of the European parliament and of the Council (2014) Official Journal of the European Union L 150/195–L 150/230Google Scholar
  11. 11.
  12. 12.
    Reduction of Perfluorocompound (PFC) Emissions: 2005 State-of-the-Technology (2005) Report Technology Transfer #05104693A-ENG International SEMATECH Manufacturing InitiativeGoogle Scholar
  13. 13.
    ODS destruction (2009) ICF International for U.S. EPA’s Stratospheric Protection DivisionGoogle Scholar
  14. 14.
    Kawai Y, Ikegami H, Sato N, et al. (eds) (2010) Industrial plasma technology. Wiley, Hoboken, chap.6, pp 69–77Google Scholar
  15. 15.
    Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001CrossRefGoogle Scholar
  16. 16.
    Hrabovský M (1998) Water-stabilized plasma generators. Pure Appl Chem 70:1157–1162CrossRefGoogle Scholar
  17. 17.
    Hrabovský M, Kopecký V, Sember V, Kavka T, Chumak O, Konrád M (2006) Properties of hybrid water-gas DC arc plasma torch. IEEE Trans Plasma Sci 34:1566–1575CrossRefGoogle Scholar
  18. 18.
    Hrabovský M (2011) Steam plasma flows generated in gerdien arc: environment for energy gas production from organics and for surface coatings. J Fluid Sci Technol 6:792–801CrossRefGoogle Scholar
  19. 19.
    Deam RT, Dayal AR, McAllister T et al (1995) Interconversion of chlorofluorocarbons in plasmas. J Chem Soc Chem Commun 3:347–348CrossRefGoogle Scholar
  20. 20.
    Murphy AB, Farmer AJD, Horrigan EC, McAllister T (2002) Plasma destruction of ozone depleting substances. Plasma Chem Plasma Process 22:371–375CrossRefGoogle Scholar
  21. 21.
    Narengerile Saito H, Watanabe T (2010) Decomposition mechanism of fluorinated compounds in water plasmas generated under atmospheric pressure. Plasma Chem Plasma Process 30:813–829CrossRefGoogle Scholar
  22. 22.
    Chen SH, Živný O, Mašláni A, Chau SW (2019) Abatement of fluorinated compounds in thermal plasma flow. J Fluorine Chem 217:41–49CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Lee HM, Chen SH (2017) Thermal abatement of perfluorocompounds with plasma torches. Energy Proc 142:3637–3643CrossRefGoogle Scholar
  25. 25.
    Hlína M, Hrabovský M, Kavka T, Konrád M (2014) Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Manag 34:63–66CrossRefGoogle Scholar
  26. 26.
    Hrabovský M, Hlína M, Kopecký V et al (2017) Steam plasma treatment of organic substances for hydrogen and syngas production. Plasma Chem Plasma Process 37:739–762CrossRefGoogle Scholar
  27. 27.
    Hrabovský M, Hlína M, Kopecký V et al (2018) Steam plasma methane reforming for hydrogen production. Plasma Chem Plasma Process 38:743–758CrossRefGoogle Scholar
  28. 28.
    Sember V, Mašláni A (2009) A simple spectroscopic method for determining temperature in a H2O–Ar plasma jet. High Temp Material Process – US 13:217–228Google Scholar
  29. 29.
    Mašláni A, Sember V, Hrabovský M (2017) Spectroscopic determination of temperatures in plasmas generated by arc torches. Spectrochim Acta B 133:14–20CrossRefGoogle Scholar
  30. 30.
    Sember V, Mašláni A, Křenek P et al (2011) Spectroscopic charactrerization of a steam arc cutting torch. Plasma Chem Plasma Process 31:755–770CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Graziano G (2008) On the superhydrophobicity of tetrafluoromethane. Chem Phys Lett 460:470–473CrossRefGoogle Scholar
  33. 33.
    Zuckerman JJ, Hagen AP (Eds.) (2009) Inorganic reactions and methods, vol 1. The formation of bonds to hydrogen (Part 1), WCH Publishers IncGoogle Scholar
  34. 34.
    Coufal O, Sezemský P, Živný O (2005) Database system of thermodynamic properties of individual substances at high temperatures. J Phys D Appl Phys 38:1265–1274CrossRefGoogle Scholar
  35. 35.
    CRC Handbook of Chemistry and Physics (2010) 91st ed., Taylor and Francis part 9, p 67Google Scholar
  36. 36.
    Holland DMP, Potts AW, Trofimov AB et al (2005) An experimental and theoretical study of the valence shell photoelectron spectrum of tetrafluoromethane. Chem Phys 308:43–57CrossRefGoogle Scholar
  37. 37.
    Watanabe N, Suzuki D, Takahashi M (2011) Experimental and theoretical study on generalized oscillator strengths of the valence-shell electronic excitations in CF4. J Chem Phys 134:064307CrossRefGoogle Scholar
  38. 38.
    Christophorou LG, Olthoff JK (2004) Fundamental electron interactions with plasma processing gases. Springer, New YorkCrossRefGoogle Scholar
  39. 39.
    Wiberg N (ed) (2001) Inorganic chemistry. Academic Press, San Diego, pp 526–527Google Scholar
  40. 40.
    Barker JR, Steiner AL, Wallington TL (eds) (2016) Advances in atmospheric chemistry, vol 1. World Scientific, Singapore, pp 347–349Google Scholar
  41. 41.
    Berry RJ, Ehlers CJ, Burgess DR Jr, Zachariah MR, Marshall P (1997) A computational study of the reactions of atomic hydrogen with fluoromethanes: kinetics and product channels. Chem Phys Lett 269:107–116CrossRefGoogle Scholar
  42. 42.
    NIST Chemical kinetics database (2019) https://kinetics.nist.gov. Accessed 27 Jun 2019

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. Živný
    • 1
    Email author
  • M. Hlína
    • 1
  • A. Serov
    • 1
  • A. Halinouski
    • 1
  • A. Mašláni
    • 1
  1. 1.Institute of Plasma Physics of the CASPrague 8Czech Republic

Personalised recommendations