Microwave Plasma-Enhanced and Microwave Heated Chemical Reactions

  • Sarojini Tiwari
  • Ashley Caiola
  • Xinwei Bai
  • Amoolya Lalsare
  • Jianli HuEmail author
Review Article


Microwave plasma technology is revolutionizing reaction engineering fields such as methane dry reforming, chemical synthesis, biomass conversion, and waste treatment. Microwave generated plasma offers sustainable, cleaner and efficient operations compared to conventional methods. Microwave plasma reactions are more efficient when integrated with catalysts. In this article, a thorough categorization and comparison of microwave plasma-assisted catalytic reactions are presented, while highlighting their contribution to an energy efficient and sustainable future in chemical processing. An introduction on commercial applications of microwave plasma technology is also presented to emphasize its advantages in modern industries. Microwave irradiation can be used as a source of heat or plasma. The addition of heterogeneous catalyst to either microwave heated or microwave enhanced plasma systems can lead to complex pathways in reaction systems. A final section in this article is dedicated to comprehend this complexity in chemical reactions occurring in microwave heated and microwave plasma-enhanced catalytic systems.


Catalysis Nonthermal plasma Microwave discharges Reaction mechanism 



The authors acknowledge financial support from the West Virginia Higher Education Policy Commission under Grant HEPC.dsr.18.7.


  1. 1.
    Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19:1063–1077. CrossRefGoogle Scholar
  2. 2.
    Gomez E, Rani DA, Cheeseman CR et al (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161:614–626. CrossRefPubMedGoogle Scholar
  3. 3.
    Bonizzoni G, Vassallo E (2002) Plasma physics and technology; industrial applications. Vacuum 64:327–336CrossRefGoogle Scholar
  4. 4.
    Hippler R (2001) Low temperature plasma physics: fundamental aspects and applications. Wiley, HobokenGoogle Scholar
  5. 5.
    Nehra V, Kumar A, Dwivedi HK (2008) Atmospheric non-thermal plasma sources. Int J Eng 2:53–68Google Scholar
  6. 6.
    Lebedev YA (2010) Microwave discharges: generation and diagnostics. In: Journal of physics: conference seriesGoogle Scholar
  7. 7.
    Ferreira CM, Moisan M (1993) Microwave discharges: fundamentals and application. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Kaiser M, Baumgärtner KM, Mattheus A (2012) Microwave plasma sources—applications in industry. Contrib Plasma Phys 52:629–635. CrossRefGoogle Scholar
  9. 9.
    Tendero C, Tixier C, Tristant P et al (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Part B 61:2–30. CrossRefGoogle Scholar
  10. 10.
    George SM (1995) Introduction: heterogeneous catalysis. Chem Rev 95:475–476. CrossRefGoogle Scholar
  11. 11.
    Hoxie E, Fracasso C (2011) Known knowns… known unknowns… and unknown unknowns: processing the research journey. NeuroQuantology 9:515–517. CrossRefGoogle Scholar
  12. 12.
    Hellund EJ (1961) The plasma state. Reinhold Publishing Corporation, New YorkGoogle Scholar
  13. 13.
    Chen HL, Lee HM, Chen SH et al (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalyss systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43:2216–2227. CrossRefPubMedGoogle Scholar
  14. 14.
    Roland U, Holzer F, Kopinke FD (2005) Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: part 2. Ozone decomposition and deactivation. Appl Catal B Environ 58:217–226. CrossRefGoogle Scholar
  15. 15.
    Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B Environ 78:324–333. CrossRefGoogle Scholar
  16. 16.
    Petitpas G, Rollier JD, Darmon A et al (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy 32:2848–2867. CrossRefGoogle Scholar
  17. 17.
    Laroussi M, Akan T (2007) Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process Polym 4:777–788. CrossRefGoogle Scholar
  18. 18.
    Pankaj SK, Bueno-Ferrer C, Misra NN et al (2014) Applications of cold plasma technology in food packaging. Trends Food Sci Technol 35:5–17. CrossRefGoogle Scholar
  19. 19.
    Thirumdas R, Sarangapani C, Annapure US (2014) Cold plasma: a novel non-thermal technology for food processing. Food Biophys 10:1–11. CrossRefGoogle Scholar
  20. 20.
    Cordova-Lopez E, Ortoneda-Pedrola M, Al-Shamma’a AI, Wylie SR (2009) Microwave plasma applications in automotive and food industries. In: IET conference on high power RF technologiesGoogle Scholar
  21. 21.
    Schneider J, Baumgärtner KM, Feichtinger J et al (2005) Investigation of the practicability of low-pressure microwave plasmas in the sterilisation of food packaging materials at industrial level. Surf Coat Technol 200:962–966. CrossRefGoogle Scholar
  22. 22.
    Gutierrez RL, Bourgeous KN, Salveson A et al (2006) Microwave UV: a new wave of tertiary disinfection. Proc Water Environ Found 2006:2853–2864CrossRefGoogle Scholar
  23. 23.
    Al-Shamma’a AI, Pandithas I, Lucas J (2001) Low-pressure microwave plasma ultraviolet lamp for water purification and ozone application. J Phys D Appl Phys 34:2775–2781CrossRefGoogle Scholar
  24. 24.
    Liang Q, Yan CS, Meng Y et al (2009) Recent advances in high-growth rate single-crystal CVD diamond. Diam Relat Mater 18:698–703. CrossRefGoogle Scholar
  25. 25.
    Yan CYC, Ho SHS, Lai J, et al (2006) Development of the microwave plasma CVD technique for rapid growth of large single-crystal diamond. In: The 33rd IEEE international conference on plasma science 2006Google Scholar
  26. 26.
    Butler JE, Mankelevich YA, Cheesman A et al (2009) Understanding the chemical vapor deposition of diamond: recent progress. J Phys: Condens Matter 21:364201. CrossRefGoogle Scholar
  27. 27.
    Schlemm H, Mai A, Roth S et al (2003) Industrial large scale silicon nitride deposition on photovoltaic cells with linear microwave plasma sources. Surf Coatings Technol 174–175:208–211. CrossRefGoogle Scholar
  28. 28.
    Suzuki K, Okudaira S, Sakudo N, Kanomata I (1977) Microwave plasma etching. Jpn J Appl Phys 16:1979–1984. CrossRefGoogle Scholar
  29. 29.
    Suzuki K, Ninomiya K, Mishimatsu S (1984) Microwave plasma etching. Vacuum 34:953–957. CrossRefGoogle Scholar
  30. 30.
    De la Fuente JF, Kiss AA, Radoiu MT, Stefanidis GD (2017) Microwave plasma emerging technologies for chemical processes. J Chem Technol Biotechnol 92:2495–2505. CrossRefGoogle Scholar
  31. 31.
    Sanchez AL (2010) Method and apparatus for plasma gasification of carbonic material by means of microwave radiationGoogle Scholar
  32. 32.
    White TL, Paulauskas FL, Bigelow TS (2010) System to continuously produce carbon fiber via microwave assisted plasma processingGoogle Scholar
  33. 33.
    Zakaria Z, Kamarudin SK (2016) Direct conversion technologies of methane to methanol: an overview. Renew Sustain Energy Rev 65:250–261. CrossRefGoogle Scholar
  34. 34.
    Su S, Beath A, Guo H, Mallett C (2005) An assessment of mine methane mitigation and utilisation technologies. Prog Energy Combust Sci 31:123–170. CrossRefGoogle Scholar
  35. 35.
    Reddy VLP, Kim K-H, Song H (2013) Emerging green chemical technologies for the conversion of CH4 to value added products. Renew Sustain Energy Rev 24:578–585. CrossRefGoogle Scholar
  36. 36.
    Holmen A (2009) Direct conversion of methane to fuels and chemicals. Catal Today 142:2–8. CrossRefGoogle Scholar
  37. 37.
    Hu YH, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 48:297–345. CrossRefGoogle Scholar
  38. 38.
    Suib SL, Zerger RP (1993) A direct, continuous, low-power catalytic conversion of methane to higher hydrocarbons via microwave plasmas. J Catal 139:383–391. CrossRefGoogle Scholar
  39. 39.
    Cho W, Baek Y, Moon SK, Kim YC (2002) Oxidative coupling of methane with microwave and RF plasma catalytic reaction over transitional metals loaded on ZSM-5. Catal Today 74:207–223. CrossRefGoogle Scholar
  40. 40.
    Nagazoe H, Kobayashi M, Yamaguchi T et al (2006) Characteristics of methane conversion under combined reactions of solid catalyst with microwave plasma. J Chem Eng Japan 39:314–320. CrossRefGoogle Scholar
  41. 41.
    Scholz WH (1993) Processes for industrial production of hydrogen and associated environmental effects. Gas Sep Purif 7:131–139. CrossRefGoogle Scholar
  42. 42.
    Chen W-H, Hsieh T-C, Jiang TL (2008) An experimental study on carbon monoxide conversion and hydrogen generation from water gas shift reaction. Energy Convers Manag 49:2801–2808. CrossRefGoogle Scholar
  43. 43.
    Wang YF, Tsai CH, Chang WY, Kuo YM (2010) Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor. Int J Hydrogen Energy 35:135–140. CrossRefGoogle Scholar
  44. 44.
    Heintze M, Magureanu M (2002) Methane conversion into aromatics in a direct plasma-catalytic process. J Catal 206:91–97. CrossRefGoogle Scholar
  45. 45.
    Ohnishi R, Kojima R, Shu Y et al (2004) Highly stable performance of catalytic methane dehydro-condensation to benzene and naphthalene on Mo/HZSM-5 by addition and a periodic switching treatment of H2. Stud Surf Sci Catal 147:553–558. CrossRefGoogle Scholar
  46. 46.
    Wang D, Lunsford JH, Rosynek MP (1997) Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene. J Catal 169:347–358. CrossRefGoogle Scholar
  47. 47.
    Edenhofer O, Pichs-Madruga R, Sokona Y et al (2014) Climate change 2014: mitigation of climate change. Fifth assessment report of the intergovernmental panel on climate change. Clim Chang 2014:33–107. CrossRefGoogle Scholar
  48. 48.
    Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide seperation and capture: a review. J Environ Sci 20:14–27. CrossRefGoogle Scholar
  49. 49.
    Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1:3451–3458. CrossRefGoogle Scholar
  50. 50.
    Wang WN, Soulis J, Jeffrey Yang Y, Biswas P (2014) Comparison of CO2 photoreduction systems: a review. Aerosol Air Qual Res 14:533–549. CrossRefGoogle Scholar
  51. 51.
    Liu C, Xu G, Wang T (1999) Non-thermal plasma approaches in CO2 utilization. Fuel Process Technol 58:119–134. CrossRefGoogle Scholar
  52. 52.
    Rusanov VD, Fridman AA, Sholin GV (2011) The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Uspekhi Fiz Nauk 134:447–474. CrossRefGoogle Scholar
  53. 53.
    Lebouvier A, Iwarere SA, D’Argenlieu P et al (2013) Assessment of carbon dioxide dissociation as a new route for syngas production: a comparative review and potential of plasma-based technologies. Energy Fuels 27:2712–2722. CrossRefGoogle Scholar
  54. 54.
    Spencer LF, Gallimore AD (2013) CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efficiency. Plasma Sour Sci Technol 22:9. CrossRefGoogle Scholar
  55. 55.
    Chen G, Georgieva V, Godfroid T et al (2016) Plasma assisted catalytic decomposition of CO2. Appl Catal B Environ 190:115–124. CrossRefGoogle Scholar
  56. 56.
    Berthelot A, Bogaerts A (2017) Modeling of CO2 splitting in a microwave plasma: how to improve the conversion and energy efficiency. J Phys Chem C 121:8236–8251. CrossRefGoogle Scholar
  57. 57.
    Fridman Alexander (2008) Plasma chemistry. Cambridge University Press, New YorkCrossRefGoogle Scholar
  58. 58.
    Goede APH, Bongers WA, Graswinckel MF, et al (2014) Production of solar fuels by CO2 plasmolysis. In: EPJ web of conferencesGoogle Scholar
  59. 59.
    Bongers W, Bouwmeester H, Wolf B et al (2017) Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Process Polym 14:1600126. CrossRefGoogle Scholar
  60. 60.
    Tsuji M, Tanoue T, Nakano K, Nishimura Y (2001) Decomposition of CO2 into CO and O in a microwave-excited discharge flow of CO2/He or CO2/Ar mixtures. Chem Lett 30:22–23. CrossRefGoogle Scholar
  61. 61.
    Vesel A, Mozetic M, Drenik A, Balat-Pichelin M (2011) Dissociation of CO2 molecules in microwave plasma. Chem Phys 382:127–131. CrossRefGoogle Scholar
  62. 62.
    Walzel P (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCHGoogle Scholar
  63. 63.
    Kunimori K, Osumi M, Kameoka S, Ito S (1992) Plasma-induced nitrogen chemisorption on a ruthenium black catalyst: formation of NH3 by hydrogenation of the chemisorbed nitrogen. Catal Lett 16:443–446. CrossRefGoogle Scholar
  64. 64.
    Hong J, Prawer S, Murphy AB (2018) Plasma catalysis as an alternative route for ammonia production: status, mechanisms, and prospects for progress. ACS Sustain Chem Eng 6:15–31. CrossRefGoogle Scholar
  65. 65.
    Tanaka S, Uyama H, Mastsumoto O (1994) Synergistic effect of catalysts and plasmas on synthesis of ammonia and hydrazine. Plasma Chem Plasma Process 14:491–504CrossRefGoogle Scholar
  66. 66.
    Bai X, Tiwari S, Robinson B et al (2018) Microwave catalytic synthesis of ammonia from methane and nitrogen. Catal Sci Technol. CrossRefGoogle Scholar
  67. 67.
    Bai M, Zhang Z, Bai M et al (2008) Synthesis of ammonia using CH4/N2plasmas based on micro-gap discharge under environmentally friendly condition. Plasma Chem Plasma Process 28:405–414. CrossRefGoogle Scholar
  68. 68.
    Gómez-Ramŕez A, Cotrino J, Lambert RM, González-Elipe AR (2015) Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor. Plasma Sour Sci Technol. CrossRefGoogle Scholar
  69. 69.
    Peng P, Li Y, Cheng Y et al (2016) Atmospheric pressure ammonia synthesis using non-thermal plasma assisted catalysis. Plasma Chem Plasma Process 36:1201–1210. CrossRefGoogle Scholar
  70. 70.
    Hong J, Aramesh M, Shimoni O et al (2016) Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric-pressure non-equilibrium discharge. Plasma Chem Plasma Process 36:917–940. CrossRefGoogle Scholar
  71. 71.
    Debye PJW (1929) Polar molecules. Chemical Catalog Company, IncorporatedGoogle Scholar
  72. 72.
    Horikoshi S, Serpone N (2016) Microwaves in catalysis: methodology and applications. Wiley, HobokenGoogle Scholar
  73. 73.
    Amini A, Ohno K, Maeda T, Kunitomo K (2018) Effect of the ratio of magnetite particle size to microwave penetration depth on reduction reaction behaviour by H2. Sci Rep 8:1–7. CrossRefGoogle Scholar
  74. 74.
    Bai X, Robinson B, Killmer C et al (2019) Microwave catalytic reactor for upgrading stranded shale gas to aromatics. Fuel 243:485–492. CrossRefGoogle Scholar
  75. 75.
    Mochizuki D, Sasaki R, Maitani MM et al (2015) Catalytic reactions enhanced under microwave-induced local thermal non-equilibrium in a core–shell, carbon-filled zeolite@zeolite. J Catal 323:1–9. CrossRefGoogle Scholar
  76. 76.
    Amini A, Ohno K, Maeda T, Kunitomo K (2019) A kinetic comparison between microwave heating and conventional heating of FeS-CaO mixture during hydrogen-reduction. Chem Eng J 374:648–657. CrossRefGoogle Scholar
  77. 77.
    Ferrari A, Hunt J, Lita A et al (2014) Microwave-specific effects on the equilibrium constants and thermodynamics of the steam-carbon and related reactions. J Phys Chem C 118:9346–9356. CrossRefGoogle Scholar
  78. 78.
    Hunt J, Ferrari A, Lita A et al (2013) Microwave-specific enhancement of the carbon-carbon dioxide (Boudouard) reaction. J Phys Chem C 117:26871–26880. CrossRefGoogle Scholar
  79. 79.
    Zhou J, Xu W, You Z et al (2016) A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. Nat Publ Gr. CrossRefGoogle Scholar
  80. 80.
    Wentao X, Jicheng Z, Zhiming S et al (2016) Microwave catalytic effect: a new exact reason for microwave-driven heterogeneous gas-phase catalytic reactions. Catal Sci Technol 6:698–702. CrossRefGoogle Scholar
  81. 81.
    Hu J (2018) Direct non-oxidative conversion of shale gas to chemicals: Selective activation, catalyst regeneration, and process intensification. In: ACS Spring 2018, New OrleansGoogle Scholar
  82. 82.
    Ramirez A, Hueso JL, Mallada R, Santamaria J (2017) In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction. Chem Eng J 316:50–60. CrossRefGoogle Scholar
  83. 83.
    Ramirez A, Hueso JL, Abian M et al (2019) Escaping undesired gas-phase chemistry: microwave-driven selectivity enhancement in heterogeneous catalytic reactors 5:1–7. CrossRefGoogle Scholar
  84. 84.
    Oumghar A, Legrand JC, Diamy AM, Turillon N (1995) Methane conversion by an air microwave plasma. Plasma Chem Plasma Process 15:87–107. CrossRefGoogle Scholar
  85. 85.
    Onoe K, Fujie A, Yamaguchi T, Hatano Y (1997) Selective synthesis of acetylene from methane by microwave plasma reactions. Fuel 76:281–282. CrossRefGoogle Scholar
  86. 86.
    Oumghar A, Legrand JC, Diamy AM et al (1994) A kinetic study of methane conversion by a dinitrogen microwave plasma. Plasma Chem Plasma Process 14:229–249. CrossRefGoogle Scholar
  87. 87.
    Heintze M, Magureanu M, Kettlitz M (2002) Mechanism of C2 hydrocarbon formation from methane in a pulsed microwave plasma. J Appl Phys 92:7022–7031. CrossRefGoogle Scholar
  88. 88.
    Uyama H, Matsumoto O (1989) Synthesis of ammonia in high-frequency discharges. Plasma Chem Plasma Process 9:13–24. CrossRefGoogle Scholar
  89. 89.
    Nakajima J, Sekiguchi H (2008) Synthesis of ammonia using microwave discharge at atmospheric pressure. Thin Solid Films 516:4446–4451. CrossRefGoogle Scholar
  90. 90.
    Sugiyama K, Akazawa K, Oshima M et al (1986) Ammonia synthesis by means of plasma over MgO catalyst. Plasma Chem Plasma Process 6:179–193. CrossRefGoogle Scholar
  91. 91.
    Neyts EC (2016) Plasma-surface interactions in plasma catalysis. Plasma Chem Plasma Process 36:185–212. CrossRefGoogle Scholar
  92. 92.
    Liu C, Marafee A, Mallinson R, Lobban L (1997) Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups. Appl Catal A Gen 164:21–33CrossRefGoogle Scholar
  93. 93.
    Suzuki T, Hirota E (1993) Vibrational distribution of CH3 produced by the reaction of O(1D2) atom with CH4. J Chem Phys 98:2387–2398. CrossRefGoogle Scholar
  94. 94.
    Uhm HS, Na YH, Hong YC et al (2014) Production of hydrogen-rich synthetic gas from low-grade coals by microwave steam-plasmas. Int J Hydrogen Energy 39:4351–4355. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sarojini Tiwari
    • 1
  • Ashley Caiola
    • 1
  • Xinwei Bai
    • 1
  • Amoolya Lalsare
    • 1
  • Jianli Hu
    • 1
    Email author
  1. 1.Department of Chemical and Biomedical EngineeringWest Virginia UniversityMorgantownUSA

Personalised recommendations