Advertisement

Plasmon Thin Film Transistor Using Plasma Polymerized Aniline–Rubrene–Gold Nanocomposite in One-Step Process

  • Sweety Biswasi
  • Arup R. PalEmail author
Original Paper
  • 1 Downloads

Abstract

Plasmon thin film transistor has great potential to be applied in present-day technologies including modern medical diagnostics. Here, we report the fabrication of plasmon thin film transistor, realized by depositing a nanocomposite material on a pre-fabricated transistor substrate. Plasma polymerized aniline rubrene hybrid semiconductor and gold nanoparticles are synthesized in a combined plasma process to form the nanocomposite material. Absorption spectra indicate that the polymer shows broad absorption in the UV–Visible region and inclusion of Gold nanoparticles (Au NPs) results in strongly enhanced absorption in the visible region of the electromagnetic spectrum due to plasmon resonance. The prepared thin film transistor device shows substantial increment of drain current when irradiated by a light source 520 nm, leading to significantly high responsivity and detectivity. The plasmon thin film transistor with enhanced photoresponse in the visible region can be a promising device for application in future technologies such as in the field of imaging, plasmonic integrated circuits, Human Machine Interfaces. It can also be used for varied medical applications e.g. biosensors and biomedical devices for personalized use.

Keywords

Plasma polymerization Nanocomposite material Localized surface plasmon resonance Plasmonic device Phototransistor Enhanced responsivity 

Notes

Acknowledgements

This work is financially supported by the Institute of Advanced Study in Science and Technology, Guwahati, India. SB gratefully acknowledges the financial support from DST, Government of India through INSPIRE Fellowship (No. DST/INSPIRE Fellowship/2016/IF160292). Authors thank SAIF, CSIR-NEIST for providing the HRTEM and XPS facility. SB thanks Dr. Amreen Ara Hussain for discussion on XPS analysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11090_2019_10030_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1570 kb)

References

  1. 1.
    Cho S, Ciappesoni MA, Allen MS, Allen JW, Leedy KD, Wenner BR, Kim SJ (2018) Nanotechnology 29:285201CrossRefGoogle Scholar
  2. 2.
    Hussain AA, Sharma B, Barman T, Pal AR (2016) ACS Appl Mater Interfaces 8(6):4258–4265CrossRefGoogle Scholar
  3. 3.
    Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) Nano Lett 9(2):897–902CrossRefGoogle Scholar
  4. 4.
    Kojori HS, Yun JH, Paik Y, Kim J, Anderson WA, Kim SJ (2016) Nano Lett 16:250–254CrossRefGoogle Scholar
  5. 5.
    Gogoi D, Hussain AA, Pal AR (2019) Plasma Chem Plasma Process 39:277–292CrossRefGoogle Scholar
  6. 6.
    Reese C, Roberts M, Ling M, Bao Z (2004) Mater Today 7:20–27CrossRefGoogle Scholar
  7. 7.
    Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck H, Amundson K, Ewing J, Drzaic P (2001) Proc Nat Acad Sci USA 98:4835–4840CrossRefGoogle Scholar
  8. 8.
    Gelinck GH, Huitema HEA, Veenendaal EV, Cantatore E, Schrijnemakers L, Putten J, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, Rens BJEV, Leeuw DMD (2004) Nat Mater 3:106–110CrossRefGoogle Scholar
  9. 9.
    Sheraw CD, Zhou L, Huang JR, Gundlach DJ, Jackson TN, Kane MG, Hill IG, Greening BK, Francl K, West J (2002) Appl Phys Lett 80(6):1088–1090CrossRefGoogle Scholar
  10. 10.
    Zhu ZT, Mason JT, Dieckmann R, Malliaras GG (2002) Appl Phys Lett 81:4643–4645CrossRefGoogle Scholar
  11. 11.
    Atwater HA, Polman A (2010) Nat Mater 9(3):205–213CrossRefGoogle Scholar
  12. 12.
    Kergoat L, Piro B, Berggren M, Horowitz G, Pham MC (2012) Anal Bioanal Chem 402(5):1813–1826CrossRefGoogle Scholar
  13. 13.
    Xu H, Li J, Lung BHK, Poon CCY, Ong SB, Zhang Y, Zhao N (2013) Nanoscale 5:11850–11855CrossRefGoogle Scholar
  14. 14.
    Barman T, Pal AR (2015) ACS Appl Mater Interfaces 7:2166–2170CrossRefGoogle Scholar
  15. 15.
    Cruz GJ, Morales J, Castillo-Ortega MM, Olayo R (1997) Synth Met 88:213–218CrossRefGoogle Scholar
  16. 16.
    Hussain AA, Pal AR, Bailung H, Chutia J, Patil DS (2013) J Phys D Appl Phys 46:325301CrossRefGoogle Scholar
  17. 17.
    CaO Y, Andreatta A, Heeger AJ, Smith P (1989) Polymer 30:2305–2311CrossRefGoogle Scholar
  18. 18.
    Barman T, Hussain AA, Sharma B, Pal AR (2015) Sci Rep 5:18276CrossRefGoogle Scholar
  19. 19.
    Hussain AA, Pal AR (2017) J Mater Chem C 5:1136–1148CrossRefGoogle Scholar
  20. 20.
    McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Nat Mater 4:138–142CrossRefGoogle Scholar
  21. 21.
    Jia W, Chen Q, Chen L, Yuan D, Xiang J, Chen Y, Xiong Z (2016) J Phys Chem C 120:8380–8386CrossRefGoogle Scholar
  22. 22.
    Li W, Li S, Duan L, Chen H, Wang L, Dong G, Xu Z (2016) Org Electron 37:346–351CrossRefGoogle Scholar
  23. 23.
    Yang D, Zhou X, Ma D (2013) Org Electron 14:3019–3023CrossRefGoogle Scholar
  24. 24.
    Alves H, Pinto RM, Macoas ES (2013) Nat Commun 4:1842CrossRefGoogle Scholar
  25. 25.
    Zeng X, Zhang D, Duan L, Wang L, Dong G, Qiu Y (2007) Appl Surf Sci 253:6047–6051CrossRefGoogle Scholar
  26. 26.
    Takeya J, Tsukagoshi K, Aoyagi Y, Takenobu T, Iwasa Y (2005) Jpn J Appl Phys 44:L1393–L1396CrossRefGoogle Scholar
  27. 27.
    Hasegawa T, Takeya J (2009) Sci Technol Adv Mater 10:024314CrossRefGoogle Scholar
  28. 28.
    Hussain AA, Sharma S, Pal AR, Bailung H, Chutia J, Patil DS (2012) Plasma Chem Plasma Process 32(4):817–832CrossRefGoogle Scholar
  29. 29.
    Yasuda H (1981) J Polym Sci Part D: Macromol Rev 16:199–293Google Scholar
  30. 30.
    Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ (2013) Nat Commun 4:1643CrossRefGoogle Scholar
  31. 31.
    Moroz P, Razgoniaeva N, Vore A, Eckard H, Kholmicheva N, McDarby A, Razgoniaev AN, Ostrowski AD, Khon D, Zamkov M (2017) ACS Photonics 4(9):2290–2297CrossRefGoogle Scholar
  32. 32.
    Gall D (2016) J Appl Phys 119:085101CrossRefGoogle Scholar
  33. 33.
    Krishnamurthy S, Esterle A, Sharma NC, Sahi SV (2014) Nanoscale Res Lett 9:627CrossRefGoogle Scholar
  34. 34.
    Sarma BK, Pal AR, Bailung H, Chutia J (2011) Plasma Chem Plasma Process 31:741–754CrossRefGoogle Scholar
  35. 35.
    Golczak S, Kanciurzewska A, Fahlman M, Langer K, Langer JJ (2008) Solid State Ionics 179:2234–2239CrossRefGoogle Scholar
  36. 36.
    Kang ET, Neoh KG, Khor SH, Tan KL, Tan BTG (1989) J Chem Soc Chem Commun 11:695–697CrossRefGoogle Scholar
  37. 37.
    Hussain AA, Pal AR, Kar R, Bailung H, Chutia J, Patil DS (2014) Mater Chem Phys 148(3):540–547CrossRefGoogle Scholar
  38. 38.
    Yan X, Xu T, Chen G, Yang S (2004) liu H, Xue Q. J Phys D Appl Phys 7:1–7Google Scholar
  39. 39.
    Sarma BK, Pal AR, Bailung H, Chutia J (2012) J Phys D Appl Phys 45:275401CrossRefGoogle Scholar
  40. 40.
    Sinha S, Mukherjee M (2015) AIP Adv 5:107204CrossRefGoogle Scholar
  41. 41.
    Moulder JF, Chastain J (1992) Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS DataGoogle Scholar
  42. 42.
    Tchaplyguine M, Mikkelä MH, Zhang C, Andersson T, Björneholm O (2015) J Phys Chem C 119(16):8937–8943CrossRefGoogle Scholar
  43. 43.
    Bhadra S, Khastgir D (2009) Synth Met 159:1141–1146CrossRefGoogle Scholar
  44. 44.
    Adhikari S, Banerji P (2010) Thin Solid Films 518:5421–5425CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Sciences DivisionInstitute of Advanced Study in Science and TechnologyGuwahatiIndia

Personalised recommendations