Advertisement

Immobilization of Chitosan Onto Polypropylene Foil via Air/Solution Atmospheric Pressure Plasma Afterglow Treatment

  • D. NikitinEmail author
  • I. Lipatova
  • I. Naumova
  • N. Sirotkin
  • P. Pleskunov
  • I. Krakovský
  • I. Khalakhan
  • A. Choukourov
  • V. Titov
  • A. Agafonov
Original Paper
  • 12 Downloads

Abstract

The combination of an atmospheric pressure plasma afterglow operated in air with wet grafting was utilized for the immobilization of chitosan on the surface of polypropylene foil. The plasma treatment results in a local modification of polymer surface along the sample axis with a modified zone of width 2 cm. Moreover, plasma treatment initiates etching and melting of the polymer on micro-level. Processing in combination with chitosan solution in-line prevents thermal effects and results in the formation of island-like chitosan structures. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) reveal the presence of chemical groups typical for chitosan structure.

Keywords

Atmospheric pressure plasma Solution plasma processing Polypropylene Chitosan Immobilization 

Notes

Acknowledgements

The authors acknowledge the support from the Charles University in Prague through the grant SVV 260 444/2018. Authors also would like to thank Dr. Artem Shelemin for the assistance with XPS measurements.

References

  1. 1.
    Choi HS, Rybkin VV, Titov VA et al (2006) Comparative actions of a low pressure oxygen plasma and an atmospheric pressure glow discharge on the surface modification of polypropylene. Surf Coat Technol 200:4479–4488.  https://doi.org/10.1016/j.surfcoat.2005.03.037 CrossRefGoogle Scholar
  2. 2.
    Rybkin VV, Shikova TG, Titov VA (2008) The oxidative modification of polypropylene surface in electrolytic-cathode atmospheric-pressure discharge. High Energy Chem 42:485–487.  https://doi.org/10.1134/S001814390806012X CrossRefGoogle Scholar
  3. 3.
    Sarani A, De Geyter N, Nikiforov AY et al (2012) Surface modification of PTFE using an atmospheric pressure plasma jet in argon and argon + CO2. Surf Coat Technol 206:2226–2232.  https://doi.org/10.1016/j.surfcoat.2011.09.070 CrossRefGoogle Scholar
  4. 4.
    Cheng C, Liye Z, Zhan RJ (2006) Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surf Coat Technol 200:6659–6665.  https://doi.org/10.1016/j.surfcoat.2005.09.033 CrossRefGoogle Scholar
  5. 5.
    Kostov KG, Nishime TMC, Hein LRO, Toth A (2013) Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies. Surf Coat Technol 234:60–66.  https://doi.org/10.1016/j.surfcoat.2012.09.041 CrossRefGoogle Scholar
  6. 6.
    Mercado-Cabrera A, Jaramillo-Sierra B, López-Callejas R et al (2013) Surface modification of polypropylene fiber for hydrophilicity enhancement aided by DBD plasma. Prog Org Coat 76:1858–1862.  https://doi.org/10.1016/j.porgcoat.2013.05.029 CrossRefGoogle Scholar
  7. 7.
    Gonzalez E, Hicks RF (2010) Surface analysis of polymers treated by remote atmospheric pressure plasma. Langmuir 26:3710–3719.  https://doi.org/10.1021/la9032018 CrossRefGoogle Scholar
  8. 8.
    Vakili M, Rafatullah M, Salamatinia B et al (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130.  https://doi.org/10.1016/j.carbpol.2014.07.007 CrossRefGoogle Scholar
  9. 9.
    Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191.  https://doi.org/10.1016/j.molliq.2015.12.013 CrossRefGoogle Scholar
  10. 10.
    Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165.  https://doi.org/10.1016/j.carbpol.2016.03.030 CrossRefGoogle Scholar
  11. 11.
    Anitha A, Sowmya S, Kumar PTS et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667.  https://doi.org/10.1016/j.progpolymsci.2014.02.008 CrossRefGoogle Scholar
  12. 12.
    Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182.  https://doi.org/10.1016/j.foodchem.2008.11.047 CrossRefGoogle Scholar
  13. 13.
    Prasertsung I, Damrongsakkul S, Terashima C et al (2012) Preparation of low molecular weight chitosan using solution plasma system. Carbohydr Polym 87:2745–2749.  https://doi.org/10.1016/j.carbpol.2011.11.055 CrossRefGoogle Scholar
  14. 14.
    Prasertsung I, Damrongsakkul S, Saito N (2013) Degradation of b -chitosan by solution plasma process (SPP). Polym Degrad Stab 98:2089–2093.  https://doi.org/10.1016/j.polymdegradstab.2013.07.001 CrossRefGoogle Scholar
  15. 15.
    Chokradjaroen C, Rujiravanit R, Watthanaphanit A et al (2017) Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent. Carbohydr Polym 167:1–11.  https://doi.org/10.1016/j.carbpol.2017.03.006 CrossRefGoogle Scholar
  16. 16.
    Theapsak S, Watthanaphanit A, Rujiravanit R (2012) Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment. ACS Appl Mater Interfaces 4:2474–2482.  https://doi.org/10.1021/am300168a CrossRefGoogle Scholar
  17. 17.
    Lei J, Yang L, Zhan Y et al (2014) Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Colloids Surf B Biointerfaces 114:60–66.  https://doi.org/10.1016/j.colsurfb.2013.09.052 CrossRefGoogle Scholar
  18. 18.
    Černáková L, Černák M, Tóth A et al (2015) Chitosan immobilization to the polypropylene nonwoven after activation in atmospheric—pressure nitrogen plasma. Open Chem 13:457–466.  https://doi.org/10.1515/chem-2015-0055 Google Scholar
  19. 19.
    Sophonvachiraporn P, Rujiravanit R, Sreethawong T et al (2011) Surface characterization and antimicrobial activity of chitosan-deposited DBD plasma-modified woven PET surface. Plasma Chem Plasma Process 31:233–249.  https://doi.org/10.1007/s11090-010-9276-x CrossRefGoogle Scholar
  20. 20.
    Bin Chang Y, Tu PC, Wu MW et al (2008) A study on chitosan modification of polyester fabrics by atmospheric pressure plasma and its antibacterial effects. Fibers Polym 9:307–311.  https://doi.org/10.1007/s12221-008-0049-6 CrossRefGoogle Scholar
  21. 21.
    Tseng HJ, Hsu SH, Wu MW et al (2009) Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers Polym 10:53–59.  https://doi.org/10.1007/s12221-009-0053-5 CrossRefGoogle Scholar
  22. 22.
    Yorsaeng S, Pornsunthorntawee O, Rujiravanit R (2012) Preparation and characterization of chitosan-coated DBD plasma-treated natural rubber latex medical surgical gloves with antibacterial activities. Plasma Chem Plasma Process 32:1275–1292.  https://doi.org/10.1007/s11090-012-9405-9 CrossRefGoogle Scholar
  23. 23.
    Suganya A, Shanmugvelayutham G, Hidalgo-Carrillo J (2018) Plasma surface modified polystyrene and grafted with chitosan coating for improving the shelf lifetime of postharvest grapes. Plasma Chem Plasma Process 38:1151–1168.  https://doi.org/10.1007/s11090-018-9908-0 CrossRefGoogle Scholar
  24. 24.
    Nikitin D, Choukourov A, Titov V et al (2016) In situ coupling of chitosan onto polypropylene foils by an atmospheric pressure air glow discharge with a liquid cathode. Carbohydr Polym 154:30–39.  https://doi.org/10.1016/j.carbpol.2016.08.023 CrossRefGoogle Scholar
  25. 25.
    Albadarin AB, Collins MN, Naushad M et al (2017) Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272.  https://doi.org/10.1016/j.cej.2016.08.089 CrossRefGoogle Scholar
  26. 26.
    Popelka A, Novák I, Lehocký M et al (2012) A new route for chitosan immobilization onto polyethylene surface. Carbohydr Polym 90:1501–1508.  https://doi.org/10.1016/j.carbpol.2012.07.021 CrossRefGoogle Scholar
  27. 27.
    Guimond S, Wertheimer MR (2004) Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. J Appl Polym Sci 94:1291–1303.  https://doi.org/10.1002/app.21134 CrossRefGoogle Scholar
  28. 28.
    Leroux F, Campagne C, Perwuelz A, Gengembre L (2008) Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure. J Colloid Interface Sci 328:412–420.  https://doi.org/10.1016/j.jcis.2008.09.062 CrossRefGoogle Scholar
  29. 29.
    Kostov KG, Nishime TMC, Hein LRO, Toth A (2013) Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies. Surf Coat Technol 234:60–66.  https://doi.org/10.1016/j.surfcoat.2012.09.041 CrossRefGoogle Scholar
  30. 30.
    Dorai R, Kushner MJ (2003) A model for plasma modification of polypropylene using atmospheric pressure discharges. J Phys D Appl Phys 36:666–685.  https://doi.org/10.1088/0022-3727/36/6/309 CrossRefGoogle Scholar
  31. 31.
    Schütze A, Jeong JY, Babayan SE et al (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26:1685–1694.  https://doi.org/10.1109/27.747887 CrossRefGoogle Scholar
  32. 32.
    Duluard CY, Dufour T, Hubert J, Reniers F (2013) Influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma. J Appl Phys.  https://doi.org/10.1063/1.4794324 Google Scholar
  33. 33.
    Deng XL, Nikiforov AY, Vanraes P, Leys C (2013) Direct current plasma jet at atmospheric pressure operating in nitrogen and air. J Appl Phys.  https://doi.org/10.1063/1.4774328 Google Scholar
  34. 34.
    Staack D, Farouk B, Gutsol A, Fridman A (2008) DC normal glow discharges in atmospheric pressure atomic and molecular gases. Plasma Sources Sci Technol.  https://doi.org/10.1088/0963-0252/17/2/025013 Google Scholar
  35. 35.
    Bobkova ES, Smirnov SA, Zalipaeva YV, Rybkin VV (2014) Modeling chemical composition for an atmospheric pressure dc discharge in air with water cathode by 0-D model. Plasma Chem Plasma Process 34:721–743.  https://doi.org/10.1007/s11090-014-9539-z CrossRefGoogle Scholar
  36. 36.
    Murakami T, Niemi K, Gans T et al (2014) Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity. Plasma Sources Sci Technol.  https://doi.org/10.1088/0963-0252/23/2/025005 Google Scholar
  37. 37.
    Nikiforov A, Li L, Britun N et al (2014) Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet. Plasma Sources Sci Technol.  https://doi.org/10.1088/0963-0252/23/1/015015 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. Nikitin
    • 1
    • 2
    Email author
  • I. Lipatova
    • 1
  • I. Naumova
    • 3
  • N. Sirotkin
    • 1
  • P. Pleskunov
    • 2
    • 4
  • I. Krakovský
    • 2
  • I. Khalakhan
    • 5
  • A. Choukourov
    • 2
  • V. Titov
    • 1
  • A. Agafonov
    • 1
  1. 1.G. A. Krestov Institute of Solution Chemistry, Russian Academy of SciencesIvanovoRussia
  2. 2.Department of Macromolecular Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  3. 3.Department of Natural SciencesIvanovo State Agricultural AcademyIvanovoRussia
  4. 4.Department of Electronic Devices and MaterialsIvanovo State University of Chemistry and TechnologyIvanovoRussia
  5. 5.Department of Surface and Plasma Science, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations