Thermal Plasma Synthesis of Zirconia Powder and Preparation of Premixed Ca-Doped Zirconia

  • P. IovaneEmail author
  • C. Borriello
  • S. Portofino
  • A. De Girolamo Del Mauro
  • G. Magnani
  • C. Minarini
  • S. Galvagno
Original Paper


A novel study about the synthesis of zirconia and calcia-stabilized zirconia powders were carried out by DC thermal plasma starting from cheap precursors as the carbonates. Different operational parameters were investigated to explore the effects of the process conditions, such as the plasma torch power and the gas flow rate on the composition and the morphology of the powders. The products phase changes from a metastable tetragonal to monoclinic/tetragonal mixture. Basically a main tetragonal phase was obtained at low torch power (7 kW) while the amount of monoclinic phase linearly rises with the power, up to 66 wt% at 26 kW of plasma power and high gas flow rate. The gas flow rate also affects the shape and the size of the powder, where high values reduce powder aggregation and enhance the spherical shape. The best results were achieved at 22 kW of plasma power and high gas flow rate, with powders of roundness about 79% and a wide particle size distribution. Adding the calcium carbonate to the zirconium carbonate (corresponding to 8 wt% CaO in the final mixture), the plasma treatment mainly produces a tetragonal phase zirconia, that at 1400 °C in furnace changes in a stable cubic phase. These powders could be made suitable for further industrial applications after proper treatments.


Zirconia Gas flow rate Phase transition Thermal plasma Spherical shape 



The authors would like to thank some ENEA colleagues as Mr. Giuseppe Pandolfi, Mr. Giovanni De Filippo and Eng. Silvestro Cavaliere for the plant assistance and society FKV srl for the analysis on the particle size distribution.


  1. 1.
    Green DJ, Hannink RHJ, Swaink MV (1989) Transformation toughening of ceramics. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83:461–487CrossRefGoogle Scholar
  3. 3.
    Rhodes WH, Natansohn S (1989) Powders for advanced structural ceramics. Am Ceram Soc Bull 68:1804–1812Google Scholar
  4. 4.
    Brog JP, Chanez CL, Crochet A, Fromm KM (2013) Polymorphism, what it is and how to identify it: a systematic review. RSC Adv 3:16905–16931CrossRefGoogle Scholar
  5. 5.
    Isfahani TD, Javadpour J, Khavand A, Goodarzi M, RezaRezaie H (2014) Nanocrystalline growth activation energy of zirconia polymorphs synthesized by mechanochemical techinique. Mater Sci Technol 30:387–393CrossRefGoogle Scholar
  6. 6.
    Viazzi C, Bonino JP, Ansart F, Barnabé A (2008) Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. J Alloys Compd 452:377–383CrossRefGoogle Scholar
  7. 7.
    Durrani K, Qureshi AH, Naz S, Hussain SZ, Arif M, Iqbal M (2013) Effect of stoichiometric compositions on the development of phase and microstructure in calcia stabilized zirconia ceramic. Nucleus 50:61–66Google Scholar
  8. 8.
    Serena S, Caballero A, Turrillas X, Martin D, Sainz MA (2009) Effect of ceramic nanoparticles on the solid-state reaction mechanism of dolomite–zirconium oxide followed by neutron thermodiffraction measurements. J Nanopart Res 11:869–878CrossRefGoogle Scholar
  9. 9.
    Dickenson RM, Swain MV, Heuer AH (1987) Microstructural evolution in Ca-PSZ and the room-temperature instability of tetragonal zirconia. J Am Ceram Soc 70:214–220CrossRefGoogle Scholar
  10. 10.
    Kurapova OYu, Glumov OV, Pivovarov MM, Golubev SN, Konakov VG (2017) Structure and conductivity of calcia stabilized zirconia ceramics, manufactured from freeze-dried nanopower. Rev Adv Mater Sci 52:134–141Google Scholar
  11. 11.
    Bernstein E, Blanchina AMG, Samdi A (1989) Structural characteristics of ZrO2 powders prepared from acetates. Ceram Int 15:337–343CrossRefGoogle Scholar
  12. 12.
    Clough DJ (2008) Chapter 7: ZrO2 powders for advanced and engineered ceramics. In: Proceedings of the conference on raw materials for advanced and engineered ceramics: ceramic engineering and science proceedings. Wiley, HobokenGoogle Scholar
  13. 13.
    Chen C, Shen Q, Li J, Zhang L (2009) Sintering and phase transformation of 7 wt% calcia-stabilized zirconia ceramics. J Wuhan Univ Technol Mater Sci Edit 24:304–307CrossRefGoogle Scholar
  14. 14.
    Kurapova OYu, Konakov VG (2014) Phase evolution in zirconia based system. Rev Adv Mater Sci 36:177–190Google Scholar
  15. 15.
    Reddy BSB, Mal I, Tewari S, Das K, Das S (2007) Aqueous combustion synthesis and characterization of nanosized tetragonal zirconia single crystals. Met Mater Trans A 38A:1786–1793CrossRefGoogle Scholar
  16. 16.
    Al-Hazmi MH, Choi YM, Apblett AW (2014) Preparation of zirconium oxide powder using zirconium carboxylate precursors. Adv Phys Chem 2014:1–8CrossRefGoogle Scholar
  17. 17.
    Hong FCN, Yan CJ (2018) Synthesis and characterization of silicon oxide nanoparticles using an atmospheric DC plasma torch. Adv Powder Technol 29:220–229CrossRefGoogle Scholar
  18. 18.
    Djuricic B, Pickering S, McGarry D, Glaude P, Tambuyser R, Schuster K (1995) The properties of zirconia powders produced by homogeneous precipitation. Ceram Int 21:195–206CrossRefGoogle Scholar
  19. 19.
    Vaidya S, Ahmad T, Agarwal S, Ganguliw AK (2007) Nanocrystalline oxalate/carbonate precursors of Ce and Zr and their decompositions to CeO2 and ZrO2 nanoparticles. J Am Ceram Soc 90:863–869CrossRefGoogle Scholar
  20. 20.
    Pratsinis SE, Mastrangelo SVR (1989) Material synthesis in aerosol reactors. Chem Eng Prog 85:62–66Google Scholar
  21. 21.
    Mohai I, GaL L, Szepvolgyi J, Gubicza J, Farkas Z (2007) Synthesis of nanosized zinc ferrites from liquid precursors in RF thermal plasma reactor. J Eur Ceram Soc 27:941–9455CrossRefGoogle Scholar
  22. 22.
    Tong L, Reddy RG (2006) Thermal plasma synthesis of SiC nano-powders/nano-fibers. Mater Res Bull 41:2303–2310CrossRefGoogle Scholar
  23. 23.
    Ryu T, Sohn HY, Hwang KS, Fang ZZ (2009) Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int J Refract Met Hard Mater 27:149–154CrossRefGoogle Scholar
  24. 24.
    Chaturvedi V, Ananthapadmanabhann PV, Chakravarthy Y, Bhandari S, Tiwari N, Pragatheeswaran A, Das AK (2014) Thermal plasma spheroidization of aluminum oxide and characterization of the spheroidized alumina powder. Ceram Int 40:8273–8279CrossRefGoogle Scholar
  25. 25.
    Bissett H, Van der Walt IJ, Havenga JL, Nel JT (2015) Titanium and zirconium metal powder spheroidization by thermal plasma processes. J S Afr Inst Min Metall 115:937–942CrossRefGoogle Scholar
  26. 26.
    Wei WH, Wang LZ, Chen T, Duan XM, Li W (2017) Study on the flow properties of Ti–6Al–4V powders prepared by radio-frequency plasma spheroidization. Adv Powder Technol 28:2431–2437CrossRefGoogle Scholar
  27. 27.
    Fauchais P, Montavon G, Bertrand G (2010) From powders to thermally sprayed coatings. J Therm Spray Technol 19:56–80CrossRefGoogle Scholar
  28. 28.
    Kotlyarova VI, Beshkareva VT, Kartseva VE, Ivanova VV, Gasanova AA, Yuzhakovaa EA, Samokhinb AV, Fadeevb AA, Alekseevb NV, Sinayskiyb MA, Tretyakov EV (2017) Production of spherical powders on the basis of group IV metals for additive manufacturing. Inorg Mater Appl Res 8:452–458CrossRefGoogle Scholar
  29. 29.
    Fan W, Bai Y (2016) Review of suspension and solution precursor plasma sprayed thermal barrier coatings. Ceram Int 42:14299–14312CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Dietrich S, Wunderer M, Huissel A, Zaeh MF (2016) A new approach for a flexible powder production for additive manufacturing. Proc Manuf 6:88–95Google Scholar
  32. 32.
    Shahzad K, Deckers J, Zhang Z, Kruth JP, Vleugels J (2014) Additive manufacturing of zirconia parts by indirect selective laser sintering. J Eur Ceram Soc 34:81–89CrossRefGoogle Scholar
  33. 33.
    Ferrage L, Bertrand G, Lenormand P, Grossin D, Ben-Nissan B (2017) A review of the additive manufacturing (3DP) of bioceramics: alumina, zirconia (PSZ) and hydroxyapatite. J Aust Ceram Soc 53:11–20CrossRefGoogle Scholar
  34. 34.
    Deckers J, Vleugels J, Kruth JP (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Technol 05:245–260Google Scholar
  35. 35.
    Liu Q, Danlos Y, Song B, Zhang B, Yin S, Liao H (2015) Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic. J Mater Proc Technol 222:61–74CrossRefGoogle Scholar
  36. 36.
    Bhattacharjee S, Syamaprasad U, Galgali RK, Mohanty BC (1991) Preparation of calcia stabilised zirconia using a DC plasma. Mater Lett 11:59–62CrossRefGoogle Scholar
  37. 37.
    Ryu T, Choi YJ, Hwang S, Sohn HY, Kim I (2010) Synthesis of yttria-stabilized zirconia nanopowders by thermal plasma process. J Am Ceram Soc 93:3130–3135CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Garvie RC, Nicholson PS (1972) Phase analysis in zirconia system. J Am Ceram Soc 55:303–305CrossRefGoogle Scholar
  40. 40.
    Gimblett FGR, Hussain A, Sing KSW (1988) Thermal and related studies of some basic zirconium salts. J Therm Anal 34:1001–1013CrossRefGoogle Scholar
  41. 41.
    Leib EW, Vainio U, Pasquarelli RM, Kus J, Czaschke C, Walter N, Janssen R, Müller M, Schreyer A, Weller H, Vossmeyer T (2015) Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres. J Colloids Int Sci 448:582–592CrossRefGoogle Scholar
  42. 42.
    Li P, Chen IW, Penner-Hahn JE (1993) X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. Phys Rev B Condens Matter 48:10063–10073CrossRefGoogle Scholar
  43. 43.
    Gibson IR, Irvine JTS (2001) Qualitative X-ray diffraction analysis of metastable tetragonal (t0) zirconia. J Am Ceram Soc 84:615–618CrossRefGoogle Scholar
  44. 44.
    Sheu TS, Tien TY, Chen IW (1992) Cubic-to-tetragonal (t0) transformation in zirconia-containing systems. J Am Ceram Soc 75:1108–1116CrossRefGoogle Scholar
  45. 45.
    Surzhikov AP, Ghyngazov SA, Frangulyan TS, Vasil’ev IP (2015) Thermal transformations in ultrafine plasmochemical zirconium dioxide powders. J Therm Anal Calorim 119:1603–1609CrossRefGoogle Scholar
  46. 46.
    Jin C, Cao W, Jun D, Wang W (2016) Spheroidization of molybdenum powder by radio frequency thermal plasma. Dig J Nanomater Biostruct 11:883–889Google Scholar
  47. 47.
    Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:174025–174041CrossRefGoogle Scholar
  48. 48.
    Hou G, Cheng B, Ding F, Yao M, Cao Y, Hu P, Ma R, Yuan F (2015) Well dispersed silicon nanospheres synthesized by RF thermal plasma and their high thermal conductivity and dielectric constant in polymer nanocomposites. RSC Adv 5:9432–9440CrossRefGoogle Scholar
  49. 49.
    Guo JY, Gitzhofer F, Boulos MI (1997) Effects of process parameters on ultrafine SiC synthesis using induction plasmas. Plasma Chem Plasma Proc 17:219–249CrossRefGoogle Scholar
  50. 50.
    Leconte Y, Leparoux M, Portier X, Herlin-Boime N (2008) Controlled synthesis of β-SiC nanopowders with variable stoichiometry using inductively coupled plasma. Plasma Chem Plasma Proc 28:233–248CrossRefGoogle Scholar
  51. 51.
    Rai P, Kim YS, Kang SK, Yu YT (2012) Synthesis of nanosized silicon carbide through non-transferred arc thermal plasma. Plasma Chem Plasma Process 32:211–218CrossRefGoogle Scholar
  52. 52.
    Richerson DW (2006) Modern ceramic engineering, 3rd edn. Taylor and Francis Group LLC, Boca RatonGoogle Scholar
  53. 53.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley Publishing Co, Reading, pp 99–106Google Scholar
  54. 54.
    Lee JS, Park JII, Choi TW (1996) Synthesis and characterization of CaO-stabilized ZrO2 fine powders for oxygen ionic conductors. J Mater Sci 31:2833–2838CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Iovane
    • 1
    Email author
  • C. Borriello
    • 1
  • S. Portofino
    • 1
  • A. De Girolamo Del Mauro
    • 1
  • G. Magnani
    • 2
  • C. Minarini
    • 1
  • S. Galvagno
    • 1
  1. 1.Nanomaterials and Devices Laboratory (SSPT-PROMAS-NANO)ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentPorticiItaly
  2. 2.Laboratory of Materials Technologies (SSPT-PROMAS-TEMAF)ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentFaenzaItaly

Personalised recommendations