Kinetic Modelling of Atmospheric Pressure Corona Discharges in Humid Air

  • Lanbo Wang
  • She ChenEmail author
  • Feng Wang
Original Paper


Corona discharge is a self-sustained discharge of gaseous medium in inhomogeneous electric fields, which often occurs on transmission lines and has some adverse effect on the power transmission system. In this paper, a kinetic model of corona discharges is presented to simulate the evolution process of charged particles and neutral species in humid air. To investigate the effect of humidity, our model consists of 69 species and 393 chemical reactions which consider important reactions containing H2O molecules and hydrates. In addition, CO2 molecules are also included to improve the integrity of reaction database. A temporal evolution of reduced electric field strengths E/N, which are typical experimental values of corona discharges, is used as input. The simulation results show that H3O+ is one of the dominant positive ions which is in qualitative agreement with previous experimental results. The effect of humidity and pulse width on the plasma chemistry is also discussed. It is found that the humidity affects the maximum density and life time of the specific species. Meanwhile, the plasma chemistry could be affected by different pulse widths of the input electric field.


Corona discharge Humid air Kinetic modelling Global model 



The research was supported by National Natural Science Foundation of China (51607061, 51677061) and Fundamental Research Funds for the Central Universities (531118040072).


  1. 1.
    Maruvada PS (2000) Corona performance of high-voltage transmission lines. Research Studies Press, BaldockGoogle Scholar
  2. 2.
    Kuwahara T, Kuroki T, Yoshida K, Saeki N, Okubo M (2012) Development of sterilization device using air nonthermal plasma jet induced by atmospheric pressure corona discharge. Thin Solid Films 523:2–5CrossRefGoogle Scholar
  3. 3.
    Černák M, Ráhel J, Kováčik D, Šimor M, Brablec A, Slavíček P (2004) Generation of thin surface plasma layers for atmospheric-pressure surface treatments. Contrib Plasma Phys 44:492–495CrossRefGoogle Scholar
  4. 4.
    Messerle VE, Karpenko EI, Ustimenko AB (2014) Plasma assisted power coal combustion in the furnace of utility boiler: numerical modeling and full-scale test. Fuel 126:294–300CrossRefGoogle Scholar
  5. 5.
    Van Deynse A, Cools P, Leys C, Morent R, De Geyter N (2015) Surface modification of polyethylene in an argon atmospheric pressure plasma jet. Surf Coat Technol 276:384–390CrossRefGoogle Scholar
  6. 6.
    Kostov KG, Nishime TMC, Castro AHR, Toth A, Hein LRO (2014) Surface modification of polymeric materials by cold atmospheric plasma jet. Appl Surf Sci 314:367–375CrossRefGoogle Scholar
  7. 7.
    Green DW, Perry RH, Maloney JO (1997) Densities of pure substances. Perry’s Chem Eng Handb 7:2–28Google Scholar
  8. 8.
    L. R. Group (1977) Positive Discharges in Long Air Gaps at Les Renardières–1975 Results and Conclusions. Electra 53:31–153Google Scholar
  9. 9.
    Meek MJ, Craggs JD (1978) Electrical breakdown of gases. Physics Bulletin 30(6):266Google Scholar
  10. 10.
    Peyrous R (1990) The effect of relative humidity on ozone production by corona discharge in oxygen or air—a numerical simulation—part II: air. Ozone Sci Eng 12:41–64CrossRefGoogle Scholar
  11. 11.
    Alves LL, Bogaerts A, Guerra V, Turner MM (2018) Foundations of modelling of nonequilibrium low-temperature plasmas. Plasma Sources Sci Technol 27:023002CrossRefGoogle Scholar
  12. 12.
    Gaens WV, Bogaerts A (2013) Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J Phys D Appl Phys 46:275201CrossRefGoogle Scholar
  13. 13.
    Gaens WV, Bogaerts A (2014) Reaction pathways of biomedically active species in an Ar plasma jet. Plasma Sources Sci Technol 23:035015CrossRefGoogle Scholar
  14. 14.
    Schmidt-Bleker A, Winter J, Iseni S, Dünnbier M, Weltmann KD, Reuter S (2014) Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling. J Phys D Appl Phys 47:145201CrossRefGoogle Scholar
  15. 15.
    Fu Y, Krek J, Parsey GM, Verboncoeur JP (2018) Characterizing the dominant ions in low-temperature argon plasmas in the range of 1–800 Torr. Phys Plasmas 25:033505CrossRefGoogle Scholar
  16. 16.
    Cui Y, Zhuang C, Zhou X, Zeng R (2019) The dynamic expansion of leader discharge channels under positive voltage impulse with different rise times in long air gap: experimental observation and simulation results. J Appl Phys 125:113302CrossRefGoogle Scholar
  17. 17.
    Waskoenig J, Niemi K, Knake N, Graham LM, Reuter S, Gathen VS-VD et al (2010) Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci Technol 19:045018CrossRefGoogle Scholar
  18. 18.
    Kossyi IA, Matveyev AA et al (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science and Technology 1(3):207CrossRefGoogle Scholar
  19. 19.
    Gentile AC, Kushner MJ (1995) Reaction chemistry and optimization of plasma remediation of NxOyfrom gas streams. J Appl Phys 78:2074–2085CrossRefGoogle Scholar
  20. 20.
    Wang WZ, Patil B, Heijkers S et al (2017) Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling. Chemsuschem 10:2145–2157CrossRefGoogle Scholar
  21. 21.
    Wang WZ, Snoeckx R, Zhang X, Cha MS, Bogaerts A (2018) Modeling plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: the bigger plasma chemistry picture. J Phys Chem C 122:8704–8723CrossRefGoogle Scholar
  22. 22.
    Sakiyama Y, Graves DB, Chang H-W, Shimizu T, Morfill GE (2012) Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J Phys D Appl Phys 45:425201CrossRefGoogle Scholar
  23. 23.
    Liu DX, Bruggeman P, Iza F, Rong MZ, Kong MG (2010) Global model of low-temperature atmospheric-pressure He + H2O plasmas. Plasma Sources Sci Technol 19:025018CrossRefGoogle Scholar
  24. 24.
    Bobkova ES, Smirnov SA, Zalipaeva YV, Rybkin VV (2014) Modeling chemical composition for an atmospheric pressure DC discharge in air with water cathode by 0-D model. Plasma Chem Plasma Process 34:721–743CrossRefGoogle Scholar
  25. 25.
    Murakami T, Niemi K, Gans T, O’Connell D, Graham WG (2014) Afterglow chemistry of atmospheric-pressure helium–oxygen plasmas with humid air impurity. Plasma Sources Sci Technol 23:025005CrossRefGoogle Scholar
  26. 26.
    Murakami T, Niemi K, Gans T, O’Connell D, Graham WG (2013) Interacting kinetics of neutral and ionic species in an atmospheric-pressure helium–oxygen plasma with humid air impurities. Plasma Sources Sci Technol 22:045010CrossRefGoogle Scholar
  27. 27.
    Flitti A, Pancheshnyi S (2009) Gas heating in fast pulsed discharges in N2–O2mixtures. Eur Phys J Appl Phys 45:21001CrossRefGoogle Scholar
  28. 28.
    Dvonč L, Janda M (2015) Study of transient spark discharge properties using kinetic modeling. IEEE Trans Plasma Sci 43:2562–2570CrossRefGoogle Scholar
  29. 29.
    Pancheshnyi S, Eismann B, Hagelaar G, Pitchford L (2008) Computer code ZDPlasKin. University of Toulouse, LAPLACE, CNRS-UPS-INP, ToulouseGoogle Scholar
  30. 30.
    Skalny JD, Orszagh J, Matejcik S, Mason NJ, Rees JA, Aranda-Gonzalvo Y et al (2008) A mass spectrometric study of ions extracted from point to plane DC corona discharge fed by carbon dioxide at atmospheric pressure. Int J Mass Spectrom 277:210–214CrossRefGoogle Scholar
  31. 31.
    Skalny JD, Orszagh J, Mason NJ, Rees JA, Aranda-Gonzalvo Y, Whitmore TD (2008) Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. Int J Mass Spectrom 272:12–21CrossRefGoogle Scholar
  32. 32.
    Morgan L. Plasma chemistry modeling—KINEMA research and software LLC.
  33. 33.
    Hokazono H, Obara M, Midorikawa K, Tashiro H (1991) Theoretical operational life study of the closed-cycle transversely excited atmospheric CO2 laser. J Appl Phys 69:6850–6868CrossRefGoogle Scholar
  34. 34.
    Gravendeel B, de Hoog FJ (1987) Clustered negative ions in atmospheric negative corona discharges in the Trichel regime. J Phys B: Atom Mol Phys 20(23):6337CrossRefGoogle Scholar
  35. 35.
    Sakata S, Okada T (1994) Effect of humidity on hydrated cluster-ion formation in a clean room corona discharge neutralizer. J Aerosol Sci 25(5):879–893CrossRefGoogle Scholar
  36. 36.
    Nagato K, Matsui Y, Miyata T, Yamauchi T (2006) An analysis of the evolution of negative ions produced by a corona ionizer in air. Int J Mass Spectrom 248:142–147CrossRefGoogle Scholar
  37. 37.
    Sieck LW, Herron JT, Green DS (2000) Chemical kinetics database and predictive schemes for humid air plasma chemistry: Part I: Positive ion–molecule reactions. Plasma Chem Plasma Process 20(2):235–258CrossRefGoogle Scholar
  38. 38.
    G. J. M. Hagelaar. (2013). Bolsig+: Electron Boltzmann equation solver.
  39. 39.
    Phelps AV, Pitchford LC (1985) Anisotropic scattering of electrons by N2 and its effect on electron transport. Phys Rev A 31:2932–2949CrossRefGoogle Scholar
  40. 40.
    Pancheshnyi S, Biagi S, Bordage MC, Hagelaar GJM, Morgan WL, Phelps AV et al (2012) The LXCat project: electron scattering cross sections and swarm parameters for low temperature plasma modeling. Chem Phys 398:148–153CrossRefGoogle Scholar
  41. 41.
    (26 May 2014) Morgan Database (online).
  42. 42.
    (13 March 2014) Phelps Database (online).
  43. 43.
    Horenstein MN (1984) Computation of corona space charge, electric field, and VI characteristic using equipotential charge shells. IEEE transactions on industry applications. 1A–20:1607–1612CrossRefGoogle Scholar
  44. 44.
    Maruvada PS, Dallaire R, Heroux P, Rivest N (1984) Long-term statistical study of the corona electric field and ion-current performance of a ± 900-kV bipolar HVDC transmission line configuration. IEEE Trans Power Apparatus Syst 103:76–83CrossRefGoogle Scholar
  45. 45.
    Hidaka K, Fujita H (1982) A new method of electric field measurements in corona discharge using Pockels device. J Appl Phys 53:5999–6003CrossRefGoogle Scholar
  46. 46.
    Chang J-S, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19:1152–1166CrossRefGoogle Scholar
  47. 47.
    Shahin M (1969) Nature of charge carriers in negative coronas. Appl Opt 8:106–110CrossRefGoogle Scholar
  48. 48.
    Skalny JD, Mikoviny T, Matejcik S, Mason NJ (2004) An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air. Int J Mass Spectrom 233:317–324CrossRefGoogle Scholar
  49. 49.
    Pavlik M, Skalny JD (1997) Generation of [H3O]+∙(H2O)n clusters by positive corona discharge in air. Rapid Commun Mass Spectrom 11(16):1757–1766CrossRefGoogle Scholar
  50. 50.
    Shahin MM (1966) Mass-spectrometric studies of corona discharges in air at atmospheric pressures. J Chem Phys 45:2600–2605CrossRefGoogle Scholar
  51. 51.
    Held B, Peyrous R (1999) Physical and chemical studies of corona discharges in air. Czechoslov J Phys 49(3):301–320CrossRefGoogle Scholar
  52. 52.
    Hill CA, Thomas CLP (2003) A pulsed corona discharge switchable high resolution ion mobility spectrometer-mass spectrometer. The Anal 128:55–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringHunan UniversityChangshaChina
  2. 2.College of Electronic and Information EngineeringYili Normal UniversityYiningChina

Personalised recommendations