Equilibrium Chemistry in \({\text {BCl}}_3\)\({\text {H}}_2\)–Ar Plasma

  • I. B. GornushkinEmail author
  • S. V. Shabanov
  • P. G. Sennikov
Original Paper


The approach, which was developed earlier for modeling chemical reactions in laser induced plasmas, is applied to radio-frequency discharge plasmas. The model is based on the assumption that all ionization processes and chemical reactions are at local thermodynamic equilibrium. A chemical composition of an argon-hydrogen plasma with an addition of boron trichloride is studied as a function of plasma temperature and mole ratio \({\text {H}}_2/{\text {BCl}}_3\). It is established that more than twenty simple and composite molecules and ions can be formed in the course of chemical reactions. The results are compared with those obtained earlier by means of another equilibrium model that uses ab-initio quantum chemical computations of thermochemical and kinetic data and a 0D thermochemical equilibrium solver.


Plasma chemistry Modeling chemical reactions Plasma enhanced chemical vapor deposition Reduction of boron trichloride by hydrogen 



The authors are very grateful to Dr. K. Rurack and Prof. U. Panne for the support of this project. The authors also thank Prof. A. Kazakov for useful discussions and help in preparation of this manuscript. P.S acknowledges the RSF Grant support No 17-13-01027.


  1. 1.
    Handbook of Chemistry and Physics (1971) The Chemical Rubber Co., Cleveland, OH, 52nd edn., p 72Google Scholar
  2. 2.
    Matkovich VI (1977) Boron and refractory borides. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Braganza C, Vepřec S (1979) J Nucl Mater 85–86:1133–1137CrossRefGoogle Scholar
  4. 4.
    Kobayashi M, Oyama T, Nishizawa H, Ishii T, Takeuchi J (1989) Mater Sci Lett 8:403–404CrossRefGoogle Scholar
  5. 5.
    Shabarova LV, Plekhovich AD, Kut’in AM, Sennikov PG, Kornev RA (2019) High Energy Chem 53:148–154Google Scholar
  6. 6.
    Shabanov SV, Gornushkin IB (2015) Appl Phys A 121:1087–1107CrossRefGoogle Scholar
  7. 7.
    Shabanov SV, Gornushkin IB (2016) Appl Phys A 122:676CrossRefGoogle Scholar
  8. 8.
    Shabanov SV, Gornushkin IB (2018) Appl Phys A 124:716CrossRefGoogle Scholar
  9. 9.
    Sezgi NA, Dogu T, Ozbelge HO (1999) Chem Eng Sci 54:3297–3304CrossRefGoogle Scholar
  10. 10.
    Vandenbulcke L, Vuillard G (1976) J Electrochem Soc 123:278–285CrossRefGoogle Scholar
  11. 11.
    Vandenbulcke L, Vuillard G (1977) J Electrochem Soc 124:1931–1937CrossRefGoogle Scholar
  12. 12.
    Sekine T, Nakanishi N, Kato E (1989) J Jpn Inst Met 53:698CrossRefGoogle Scholar
  13. 13.
    Reinisch G, Vignoles GL, Leyssale J-M (2011) J Phys Chem A 115:11579–11588CrossRefGoogle Scholar
  14. 14.
    Reinisch G, Leyssale J-M, Vignoles GL (2011) J Phys Chem A 115:4786–4797CrossRefGoogle Scholar
  15. 15.
    Reinisch G, Leyssale J-M, Bertrand N, Chollon G, Langlais F, Vignoles G (2008) Surf Coat Technol 203:643–647CrossRefGoogle Scholar
  16. 16. Accessed 9 Apr 2019
  17. 17.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge, p 448CrossRefGoogle Scholar
  18. 18.
    Hulquist AE, Sibert ME (1969) In: Chemical reactions in electrical discharges. Advances in chemistry series, vol 80. American Chemical Society, Washington, p 182Google Scholar
  19. 19.
    Tzvetkov YuV, Panfilov SA (1980) Nizkotemperaturnaya plazma v protsessakh vosstanovleniya. Nauka, Moscow (in Russian)Google Scholar
  20. 20.
    Sennikov PG, Kornev RA, Shishkin AI (2017) Plasma Chem Plasma 37:997–1008CrossRefGoogle Scholar
  21. 21.
    Casey JD, Haggerty JS (1987) J Mater Sci 22:737–744CrossRefGoogle Scholar
  22. 22.
    Savastenko N, Volpp H-R, Gerlach O, Strehlau W (2008) J Nanopart Res 10:277–287CrossRefGoogle Scholar
  23. 23.
    Kornev RA, Sennikov PG, Shabarova LV, Shishkin AI, Drozdova TA, Sintsov SV, Vodopyanov AV (2019) High Energy Chem 53:246–253Google Scholar
  24. 24.
    Tatum JB (1966) Pub Dom Ap Obs Victoria 13:1–17Google Scholar
  25. 25.
    Atkins P, de Paula J (2018) Physical chemistry, Ch. 17. Oxford University Press, OxfordGoogle Scholar
  26. 26.
    Irwin AW (1988) Astron Astrophys Suppl Ser 74:145–160Google Scholar
  27. 27.
    Drawin H-W, Felenbok P (1965) Data for plasma in local thermodynamic equilibrium. Gaunthier-Villas, ParisGoogle Scholar
  28. 28.
    Irwin AW (1981) Astrophys J Suppl Ser 45:621–633CrossRefGoogle Scholar
  29. 29.
    Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF (2002) Chem Rev 102:231–282CrossRefGoogle Scholar
  30. 30.
    Andersen T (2004) Phys Rep 394:157–313CrossRefGoogle Scholar
  31. 31.
    Popovas A, Jørgensen UG (2016) Astron Astrophys 595:A130CrossRefGoogle Scholar
  32. 32.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. Van Nostrand Reinhold Co, New YorkCrossRefGoogle Scholar
  33. 33.
    Simons J, Jordan KD (1987) Chem Rev 87:535–555CrossRefGoogle Scholar
  34. 34.
    Xing W, Shi D, Sun J, Zhu Z (2017) Spectrochim Acta Part A 185:349–364CrossRefGoogle Scholar
  35. 35.
    Hanley L, Anderson SL (1987) J Phys Chem 91:5161–5163CrossRefGoogle Scholar
  36. 36.
    Bruna PJ, Write JS (1990) J Phys B At Mol Opt Phys 23:2197S–2215SCrossRefGoogle Scholar
  37. 37.
    Christophorou LG, Olthoff JK (1999) J Phys Chem Ref Data 28:131–169CrossRefGoogle Scholar
  38. 38.
    Peyerimhoff SD, Buenker RJ (1981) Chem Phys 57:279–296CrossRefGoogle Scholar
  39. 39.
    Midda S, Das AK (2003) J Mol Struct (Theochem) 640:183–189CrossRefGoogle Scholar
  40. 40.
    Miliordos E, Mavridis A (2008) J Chem Phys 128:144308CrossRefGoogle Scholar
  41. 41.
    Bauschlicher CW Jr, Langhoff SR, Taylor PR (1990) J Chem Phys 93:502CrossRefGoogle Scholar
  42. 42.
    Zhang Q-Q, Yang C-Lu, Wang M-S, Ma X-G, Liu W-W (2017) Spectrochim Acta Part A Mol Biomol Specrosc 182:130–135CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Irikura KK, Johnson RD III, Hudgens JW (2000) J Phys Chem A 104:3800–3805CrossRefGoogle Scholar
  45. 45.
    Magoulas I, Papakondylis A, Mavridis A (2015) Int J Quant Chem 115:771–778CrossRefGoogle Scholar
  46. 46.
    Hildenbrand DL (1996) J Chem Phys 105:10507CrossRefGoogle Scholar
  47. 47. Accessed 9 Apr 2019
  48. 48.
    Rablen PR, Hartwig JF (1996) J Am Chem Soc 118:4648–4653CrossRefGoogle Scholar
  49. 49.
    Sunahori FX, Gharaibeh M, Clouthier DJ (2015) J Chem Phys 142:174302CrossRefGoogle Scholar
  50. 50.
    Rasul G, Prakash GKS, Olah GA (2000) J Phys Chem A 104:2284–2286CrossRefGoogle Scholar
  51. 51.
    Nicolaides CA, Chrysos M, Valtazanos P (1990) J Phys B At Mol Opt Phys 23:791–800CrossRefGoogle Scholar
  52. 52.
    Warschkow O, Lee EPF, Wright TG (1997) J Chem Soc Faraday Trans 93:53–61CrossRefGoogle Scholar
  53. 53.
    Schlegel HB, Baboul AG (1996) J Phys Chem 100:9774–9779CrossRefGoogle Scholar
  54. 54.
    Baeck KK, Bartlett RJ (1997) J Chem Phys 106:4604–4617CrossRefGoogle Scholar
  55. 55.
    Christophorou LG, Olthoff JK (2002) J Phys Chem Ref Data 31:971–988CrossRefGoogle Scholar
  56. 56.
    Gharaibeh MA, Nagarajan R, Clouthier DJ, Tarroni R (2015) J Chem Phys 142:014305CrossRefGoogle Scholar
  57. 57.
    Peterson KA, Woods RC (1988) J Chem Phys 88:1074–1079CrossRefGoogle Scholar
  58. 58.
    Jacox ME (2003) J Phys Chem Ref Data 32:1–441CrossRefGoogle Scholar
  59. 59.
    Allendorf MD, Melius CF (1997) J Phys Chem A 101:2670–2680CrossRefGoogle Scholar
  60. 60.
    Grant DJ (2010) Structure, heats of formation, and bond dissociation energies of group IIIA-group IVA molecules for chemical hydrogen storage systems. PhD Thesis, Tuscaloosa, AlabamaGoogle Scholar
  61. 61.
    Galbraith JM, Vacek G, Schaefer HF III (1993) J Mol Strut 300:281–288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. B. Gornushkin
    • 1
    Email author
  • S. V. Shabanov
    • 2
  • P. G. Sennikov
    • 3
  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.Department of MathematicsUniversity of FloridaGainesvilleUSA
  3. 3.G.G. Devyatykh Institute of Chemistry of High-Purity Substances of RASNizhny NovgorodRussia

Personalised recommendations