Strong Sensitized Ultraviolet Luminescence from He–C2F4–NO Flowing Plasma Afterglow: A Route to Short-Wavelength Gas-Flow Lasers?

  • Josef SchmiedbergerEmail author
  • Werner Fuß
  • Libor Juha
Original paper


Unexpected strong ultraviolet emission has been observed from the merger of two low-pressure supersonic gas-flows previously leaving two radiofrequency (RF) discharges, one containing Ar, He, O2 and traces of NO, the other He and plasma-chemically produced C2F4. Analysis of the spectral emission data over a range of 190 to 710 nm shows that the main energy carriers in this radiofrequency powered flowing discharge afterglow are He, C2F4 (or CF2) and NO. Plasma-chemical excitation and energy transfer amongst the main energy carriers result in a spectrum dominated by a vibronic structure, covering the spectral range from 190 to 300 nm, which is assigned to the spontaneous emission from excited nitric oxide. The strongest line located at 236.2 nm is due to the NO(A2Σ+, 0–1) transition. The distance between the point of observation and the nearest RF discharge together with the residence time of gases in this region excludes any direct excitation of NO by the RF discharge itself. The observed phenomenon has potential as a plasma-chemical gas-flow laser emitting at a fundamental frequency in the mid-ultraviolet spectral region.


Sensitized ultraviolet luminescence Nitric oxide spontaneous emission Radiofrequency plasma Flowing plasma afterglow Energy transfer 



The research reported in this publication was supported by funding from Czech Science Foundation under the Project GAP102/12/0723 and Czech Ministry of Education, Youth and Sports under the Project LTT17015. We thank our former co-worker Miroslav Čenský for his initial help with preparation of spectral measurements.


  1. 1.
    McDermott WE, Pchelkin NR, Benard DJ, Bousek RR (1978) An electronic transition chemical laser. Appl Phys Lett 32(8):469–470CrossRefGoogle Scholar
  2. 2.
    Benard DJ (1993) Threshold oscillation of an NF(a1Δ)/BiF visible wavelength chemical laser. J Appl Phys 74(4):2900–2907CrossRefGoogle Scholar
  3. 3.
    Bacis R, Bonnet J, Bouvier AJ, Crozet P, Churassy S, Georges E, Erba B, Lamarre J, Louvet Y, Nota M, Pigache D, Ross AJ, Setra M (1990) Interaction of metastable oxygen with several metals and its potentiality as a visible chemical laser. Europhys Lett 12(6):569–574CrossRefGoogle Scholar
  4. 4.
    Yoshida S, Shimizu K, Sawano T, Tokuda T, Fujioka T (1989) Observation of chemical laser oscillation in the visible range. Appl Phys Lett 54(24):2400–2401CrossRefGoogle Scholar
  5. 5.
    Herbelin JM (1986) Prospects of a visible (green) chemical laser. Appl Opt 25(13):2138–2141CrossRefGoogle Scholar
  6. 6.
    Kudriavtsev NN, Shamshev DP, Sukhov AM (1993) Chemiluminescence observations in the potential exchange NF-IF laser system. Chem Phys Lett 214(5):513–518CrossRefGoogle Scholar
  7. 7.
    Gavrikov VF, Dvoryankin AN, Stepanov AA, Shmelev AK, Shcheglov VA (1994) Visible and near-infrared chemical lasers. J Russ Laser Res 15(3):177–212CrossRefGoogle Scholar
  8. 8.
    Bogan DJ, Durant JL (1978) Dioxetane chemistry in the gas phase—UV–visible chemiluminescence from the reactions of O2(1Δg) with olefins. Natl Bur Stand Spec Publ 526:24–30Google Scholar
  9. 9.
    Schmiedberger J, Jirásek V, Kodymová J, Rohlena K (2009) Novel concept of electric discharge oxygen-iodine laser. Eur Phys J D 54:239–248CrossRefGoogle Scholar
  10. 10.
    Schmiedberger J, Rohlena K, Gregor J, Křenek P, Jirásek V, Čenský M, Kodymová J (2010) Hybrid RF/DC plasma torch for generation of singlet oxygen in discharge oxygen-iodine laser. Proc SPIE 7751:77510GCrossRefGoogle Scholar
  11. 11.
    Jirásek V, Schmiedberger J, Čenský M, Kodymová J (2011) Production of iodine atoms by RF discharge decomposition of CF3I. J Phys D Appl Phys 44:115204CrossRefGoogle Scholar
  12. 12.
    Ionin AA, Kochetov IV, Napartovich AP, Yuryshev NN (2007) Physics and engineering of singlet delta oxygen production in low-temperature plasma. J Phys D Appl Phys 40:R25–R61CrossRefGoogle Scholar
  13. 13.
    Heaven MC (2010) Recent advances in the development of discharge-pumped oxygen-iodine lasers. Laser Photon Rev 4(5):671–683CrossRefGoogle Scholar
  14. 14.
    Van Der Walt IJ, Bruinsma OSL (2006) Depolymerization of clean unfilled PTFE waste in a continuous process. J Appl Polym Sci 102:2752–2759CrossRefGoogle Scholar
  15. 15.
    Ruff O, Bretschneider O (1933) Die Bildung von Hexafluoräthan und Tetrafluoräthylen aus Tetrafluorkohlenstoff. Z für Anorg und Allg Chem 210:173–183CrossRefGoogle Scholar
  16. 16.
    Baddour RF, Bronfin BR (1965) Production of tetrafluoroethylene by reaction of carbon with carbon tetrafluoride in an electric arc. I&EC Process Des Dev 4(2):162–166CrossRefGoogle Scholar
  17. 17.
    Takahashi S, Den S, Katagiri T, Yamakawa K, Kano H, Hori M (2005) Development of compact C2F4 gas supply equipment and its application to etching of dielectrics in an environmental benign process. Jpn J Appl Phys 44(24):L781–L783CrossRefGoogle Scholar
  18. 18.
    Lewis EE, Naylor MA (1947) Pyrolysis of polytetrafluoroethylene. J Am Chem Soc 69(8):1968–1970CrossRefGoogle Scholar
  19. 19.
    Hunadi RJ, Baum K (1982) Tetrafluoroethylene: a convenient laboratory preparation. Synthesis-Stuttgart Commun.
  20. 20.
    Rahman A, Yalin AP, Surla V, Stan O, Hoshimiya K, Littlefield ZYuE, Collins GJ (2004) Absolute UV and VUV emission in the 110–400 nm region from 13.56 MHz driven hollow slot microplasmas operating in open air. Plasma Sources Sci Technol 13:537–547CrossRefGoogle Scholar
  21. 21.
    Radzig AA, Smirnov BM (1985) Reference data on atoms, molecules, and ions. Springer series in chemical physics, vol 31. Springer, BerlinCrossRefGoogle Scholar
  22. 22.
    Coxon JA, Clyne MAA, Setser DW (1975) Penning ionization optical spectroscopy: metastable helium (He 23S) with nitric oxide. Chem Phys 7:255–266CrossRefGoogle Scholar
  23. 23.
    Trushin SA, Sorgues S, Fuß W, Schmid WE (2004) Coherent oscillation and ultrafast internal conversion of tetrafluoroethene after excitation at 197 nm. ChemPhysChem 5:1389–1397CrossRefGoogle Scholar
  24. 24.
    Minton TK, Felder P, Scales RC, Huber JR (1989) Photodissociation of C2F4 at 193.3 nm; the production of triplet CF2(3B1). Chem Phys Lett 164(2, 3):113–119CrossRefGoogle Scholar
  25. 25.
    NIST Chemistry WebBook (2018). Accessed 22 May 2018
  26. 26.
    Hooker SM, Webb CE (1990) Observation of laser oscillation in nitric oxide at 218 nm. Opt Lett 15(8):437–439CrossRefGoogle Scholar
  27. 27.
    Hooker SM, Haxell AM, Webb CE (1992) Observation of new laser transitions and saturation effects in optically pumped NO. Appl Phys B 54:119–125CrossRefGoogle Scholar
  28. 28.
    Haxell AM, Hooker SM, Webb CE (1992) Determination of the gain coefficient of an NO laser at 218 nm. J Phys D Appl Phys 25:593–596CrossRefGoogle Scholar
  29. 29.
    Haxell AM, Hooker SM, Webb CE (1993) Observation of vacuum ultraviolet laser oscillation in nitric oxide. Appl Opt 32(12):2062–2065CrossRefGoogle Scholar
  30. 30.
    Lin MC (1974) Photoexcitation and photodissociation lasers—part I: nitric oxide laser emissions resulting from C(2Π) → A(2Σ+) and D(2Σ+) → A(2Σ+) transitions. IEEE J Quantum Electron QE 10(6):516–521CrossRefGoogle Scholar
  31. 31.
    Johnson RO (1993) Excited atomic bromine energy transfer and quenching mechanisms. Dissertation, USA, AFIT/DS/ENP/93-05Google Scholar
  32. 32.
    Johnson RO, Perram GP, Roh WB, Hawks MR (1994) Infrared NO(v = 2 → 1) laser pumped by energy transfer from Br(2P1/2). Proc SPIE 2502:514–522CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiation and Chemical Physics, Institute of PhysicsCzech Academy of SciencesPrague 8Czech Republic
  2. 2.Max-Planck-Institut für QuantenoptikGarchingGermany
  3. 3.Laser Plasma Department, Institute of Plasma PhysicsCzech Academy of SciencesPrague 8Czech Republic

Personalised recommendations