Advertisement

Plasma Chemistry and Plasma Processing

, Volume 39, Issue 2, pp 407–421 | Cite as

Experimental Observations of Constricted and Diffuse Anode Attachment in a Magnetically Rotating Arc at Atmospheric Pressure

  • Cheng Wang
  • Lu Sun
  • Qiang Sun
  • Zelong Zhang
  • Weiluo Xia
  • Weidong XiaEmail author
Original Paper
  • 48 Downloads

Abstract

At atmospheric pressure, the anode attachment can appear in two different modes: constricted and diffuse. In this paper, a magnetically rotating arc plasma generator is built to investigate dynamics of anode attachment. A constricted and diffuse anode attachment, as well as the transformation between the two modes, are obtained. Results show the constricted anode attachment to be preferable for low arc currents and a low magnetic field, whereas the diffuse anode attachment is favored by the opposite conditions. With an increase in arc currents/magnetic field, the constricted anode attachment can transfer from a “restrike mode” with high voltage fluctuation to a “sliding mode” with low voltage fluctuation and then to a diffuse anode attachment with a long arc-shaped structure. An expanding arc column and high-temperature anode are suggested as essential conditions for the diffuse anode attachment because a thinner and hotter anode boundary layer may be promoted. In addition, the time-resolved transformation of different modes exhibits a strong mutual influence between the arc column and anode attachment, which indicates complex coupling mechanisms exist in the near-anode region.

Keywords

Anode attachment Constricted mode Diffuse mode Magnetically rotating arcs Transformation of different modes 

Notes

Acknowledgements

The work is supported by National Natural Science Foundation of China (No. 11705202) and Anhui Provincial Natural Science Foundation (No. 1808085MA12).

References

  1. 1.
    Iwao T, Cronin P, Bendix D, Heberlein J (2005) Anode attachment stability and anode heat transfer for high-intensity arcs with lateral gas flow. IEEE Trans Plasma Sci 33(3):1123–1128CrossRefGoogle Scholar
  2. 2.
    Heberlein J, Mentel J, Pfender E (2009) The anode region of electric arcs: a survey. J Phys D Appl Phys 43(2):23001–23031CrossRefGoogle Scholar
  3. 3.
    Hartmann R, Heberlein J (2001) Quantitative investigations on arc-anode attachments in transferred arcs. J Phys D Appl Phys 34(19):2972–2978CrossRefGoogle Scholar
  4. 4.
    Redwitz M, Dabringhausen L, Lichtenberg S, Langenscheidt O, Heberlein J, Mentel J (2006) Arc attachment at HID anodes: measurements and interpretation. J Phys D Appl Phys 39(10):2160–2179CrossRefGoogle Scholar
  5. 5.
    Shkolnik S (2011) Anode phenomena in arc discharges: a review. Plasma Sources Sci Technol 20(1):013001CrossRefGoogle Scholar
  6. 6.
    Mašláni A, Sember V (2014) Emission spectroscopy of OH radical in water-argon arc plasma jet. J Spectrosc 2014:952138Google Scholar
  7. 7.
    Ondac P, Maslani A, Hrabovsky M, Jenista J (2018) Measurement of anode arc attachment movement in DC arc plasma torch at atmospheric pressure. Plasma Chem Plasma Process 38(3):637–654CrossRefGoogle Scholar
  8. 8.
    Huang H, Pan W, Meng X, Wu C (2006) Development of arc root attachment in the nozzle of 1 kW N2 and H2-N2 arcjet thrusters. In: International symposium on plasma chemistryGoogle Scholar
  9. 9.
    Huang H, Pan W, Wu C (2008) Arc root motion in an argon-hydrogen DC plasma torch. IEEE Trans Plasma Sci 36(4):1050–1051CrossRefGoogle Scholar
  10. 10.
    Pan W, Li T, Meng X, Chen X, Wu C (2005) Arc root attachment on the anode surface of arc plasma torch observed with a novel method. Chin Phys Lett 22(11):2895–2898CrossRefGoogle Scholar
  11. 11.
    Pan W, Meng X, Li T, Chen X, Wu C (2007) Comparative observation of Ar, Ar-H2 and Ar-N2 DC arc plasma jets and their arc root behaviour at reduced pressure. Plasma Sources Sci Technol 9(2):152–157CrossRefGoogle Scholar
  12. 12.
    Pan W, Chen L, Meng X, Zhang Y, Wu C (2016) Sufficiently diffused attachment of nitrogen arc by gasdynamic action. Theor Appl Mech Lett 6(6):293–296CrossRefGoogle Scholar
  13. 13.
    Dorier J, Gindrat M, Hollenstein C, Salito A, Loch M, Barbezat G (2001) Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch. IEEE Trans Plasma Sci 29(3):494–501CrossRefGoogle Scholar
  14. 14.
    Yang G, Heberlein J (2007) Anode attachment modes and their formation in a high intensity argon arc. Plasma Sources Sci Technol 16(3):529–542CrossRefGoogle Scholar
  15. 15.
    Wang C, Zhang Z, Xia W, Cui H, Xia W (2017) Direct observation of anode arc root behaviors in a non-transferred arc plasma device with multiple cathodes. Plasma Chem Plasma Process 37(2):371–382CrossRefGoogle Scholar
  16. 16.
    Wang C, Cui H, Zhang Z, Xia W, Xia W (2017) Production of long, laminar plasma jets at atmospheric pressure with multiple cathodes. Contrib Plasma Phys 57(2):58–66CrossRefGoogle Scholar
  17. 17.
    Duan Z, Heberlein J (2002) Arc instabilities in a plasma spray torch. J Therm Spray Technol 11(1):44–51CrossRefGoogle Scholar
  18. 18.
    Heberlein J (2002) Electrode phenomena in DC arcs and their influence on plasma torch design. High Temp Mater Processes (New York) 6(3):321–338Google Scholar
  19. 19.
    Ghorui S, Vysohlid M, Heberlein J, Pfender E (2007) Probing instabilities in arc plasma devices using binary gas mixtures. Phys Rev E 76(1):16404CrossRefGoogle Scholar
  20. 20.
    Yang G, Cronin P, Heberlein J, Pfender E (2006) Experimental investigations of the anode boundary layer in high intensity arcs with cross flow. J Phys D Appl Phys 39(13):2764–2774CrossRefGoogle Scholar
  21. 21.
    Ghorui S, Tiwari N, Meher K, Jan A, Bhat A, Sahasrabudhe S (2015) Direct probing of anode arc root dynamics and voltage instability in a dc non-transferred arc plasma jet. Plasma Sources Sci Technol 24(6):65003–65012CrossRefGoogle Scholar
  22. 22.
    Wang C, Lu Z, Li D, Xia W, Xia W (2018) Effect of the magnetic field on the magnetically stabilized gliding arc discharge and its application in the preparation of carbon black nanoparticles. Plasma Chem Plasma Process 38(6):1223–1238CrossRefGoogle Scholar
  23. 23.
    Gangoli S, Gutsol A, Fridman A (2010) A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics. Plasma Sources Sci Technol 19(6):065003CrossRefGoogle Scholar
  24. 24.
    Gangoli S, Gutsol A, Fridman A (2010) A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electr Charact Plasma Sources Sci Technol 19(6):065004CrossRefGoogle Scholar
  25. 25.
    Li L, Chen Q, Zhou H, Xia W (2008) Images of a large-scale magnetically rotating arc. IEEE Trans Plasma Sci 36(4):1080–1081CrossRefGoogle Scholar
  26. 26.
    Zhou H, Li L, Cheng L, Zhou Z, Bai B, Xia W (2008) ICCD imaging of coexisting arc roots and arc column in a large-area dispersed arc-plasma source. IEEE Trans Plasma Sci 36(4):1084–1085CrossRefGoogle Scholar
  27. 27.
    Zha J, Zhang X, Xu Z, Wang C, Du B, Xia W (2013) Phenomena of multiarc roots and parallel arcs in a large-scale magnetically rotating arc plasma generator. IEEE Trans Plasma Sci 41(3):601–605CrossRefGoogle Scholar
  28. 28.
    Xia W, Li L, Zhao Y, Ma Q, Du B, Chen Q, Cheng L (2006) Dynamics of large-scale magnetically rotating arc plasmas. Appl Phys Lett 88(21):211501CrossRefGoogle Scholar
  29. 29.
    Wang C, Li W, Zhang X, Zha J, Xia W (2015) Evolution of magnetically rotating arc into large area arc plasma. Chin Phys B 24(6):065206CrossRefGoogle Scholar
  30. 30.
    Li L, Xia W, Mon H, Zhou Z, Bai B (2008) Experimental observation and numerical analysis of arc plasmas diffused by magnetism. Eur Phys J D 47(1):75–81CrossRefGoogle Scholar
  31. 31.
    Bai B, Zha J, Zhang X, Wang C, Xia W (2012) Simulation of magnetically dispersed arc. Plasma Plasma Sci Technol 14(2):118–121CrossRefGoogle Scholar
  32. 32.
    Baeva M, Uhrlandt D, Loffhagen D (2011) Non-equilibrium simulation of the spatial and temporal behaviour of a magnetically rotating arc in argon. Plasma Sources Sci Technol 20(3):035008CrossRefGoogle Scholar
  33. 33.
    Ghorui S, Tiwari N, Meher KC, Jan A, Bhat A, Sahasrabudhe SN (2015) Direct probing of anode arc root dynamics and voltage instability in a dc non-transferred arc plasma jet. Plasma Sources Sci Technol 24(6):065003CrossRefGoogle Scholar
  34. 34.
    Yang G, Heberlein J (2007) Anode attachment modes and their formation in a high intensity argon arc. Plasma Sources Sci Technol 16(3):529–542CrossRefGoogle Scholar
  35. 35.
    Shmelev D (2013) Kinetic model of short vacuum arc with hot evaporating anode. IEEE Trans Plasma Sci 41(8):1969–1973CrossRefGoogle Scholar
  36. 36.
    Tanaka M, Ushio M (1999) Observations of the anode boundary layer in free-burning argon arcs. J Phy D Appl Phys 32(8):906–912CrossRefGoogle Scholar
  37. 37.
    Tanaka M, Ushio M, Wu C (1999) One-dimensional analysis of the anode boundary layer in free-burning argon arcs. J Phy D Appl Phys 32(5):605–611CrossRefGoogle Scholar
  38. 38.
    Yang G, Heberlein J (2007) Instabilities in the anode region of atmospheric pressure arc plasmas. Plasma Sources Sci Technol 16(4):765–773CrossRefGoogle Scholar
  39. 39.
    Nemchinsky V, Raitses Y (2016) Anode sheath transition in an anodic arc for synthesis of nanomaterials. Plasma Sources Sci Technol 25(3):035003CrossRefGoogle Scholar
  40. 40.
    Khrabry A, Kaganovich I, Nemchinsky V, Khodak A (2018) Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions. Phys Plasmas 25(1):013521CrossRefGoogle Scholar
  41. 41.
    Khrabry A, Kaganovich I, Nemchinsky V, Khodak A (2018) Investigation of the short argon arc with hot anode. II. Analytical model. Phys Plasmas 25(1):013522CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cheng Wang
    • 1
  • Lu Sun
    • 1
  • Qiang Sun
    • 1
  • Zelong Zhang
    • 1
  • Weiluo Xia
    • 2
  • Weidong Xia
    • 1
    Email author
  1. 1.Department of Thermal Science and Energy EngineeringUniversity of Science and TechnologyHefeiChina
  2. 2.Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina

Personalised recommendations