Advertisement

Cold Atmospheric Pressure Plasma Can Induce Adaptive Response in Pea Seeds

  • Stanislav Kyzek
  • Ľudmila Holubová
  • Veronika Medvecká
  • Juliána Tomeková
  • Eliška Gálová
  • Anna Zahoranová
Original Paper
  • 12 Downloads

Abstract

This study investigated the effect of cold atmospheric pressure air plasma pre-treatment on pea (Pisum sativum L.) seeds. The aim of our study was to verify the plasma impact on DNA damage and the induction of positive adaptive response in pea seedlings. The pea seeds were treated by plasma at the exposure times ranging from 60 to 300 s. Plasma was generated using the coplanar type of dielectric surface barrier discharge. The main plasma properties were estimated by electrical and by optical emission spectroscopy measurements. The DNA damage was evaluated by the alkaline comet assay. The adaptive response on seedlings was tested using the toxic concentration of zeocin. The positive effect of plasma pre-treatment and the reduction of DNA damage of pea seedlings in comparison to control samples without plasma was observed at all exposure times used. The strongest repairing effect was observed at the plasma treatment time in the range from 120 to 240 s. These results verify the safety of plasma application in agriculture at germination and growth enhancement and the existence of a plasma induced adaptive response.

Keywords

Cold atmospheric pressure plasma Pea seeds Adaptive response Comet assay Zeocin 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the Contract No. APVV-16-0216 and by Project VEGA 1/0410/18.

References

  1. 1.
    Randeniya LK, De Groot GJJB (2015) Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. Plasma Process Polym 12:608–623.  https://doi.org/10.1002/ppap.201500042 CrossRefGoogle Scholar
  2. 2.
    Hojnik N, Cvelbar U, Tavčar-Kalcher G et al (2017) Mycotoxin decontamination of food: cold atmospheric pressure plasma versus “classic” decontamination. Toxins (Basel).  https://doi.org/10.3390/toxins9050151 CrossRefGoogle Scholar
  3. 3.
    Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–198.  https://doi.org/10.1111/j.1749-6632.1998.tb08993.x CrossRefPubMedGoogle Scholar
  4. 4.
    Crawford DR, Davies KJ (1994) Adaptive response and oxidative stress. Environ Health Perspect 102(Suppl):25–28.  https://doi.org/10.1289/ehp.94102s1025 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Azzam EI, Raaphorst GP, Mitchel REJ (1994) Radiation-induced adaptive response for protection against micronucleus formation and neoplastic transformation in C3H 10T1/2 mouse embryo cells. Radiat Res 138:S28–S31.  https://doi.org/10.2307/3578755 CrossRefPubMedGoogle Scholar
  6. 6.
    Asad LMBO, Asad NR, Silva AB et al (1997) Hydrogen peroxide induces protection against N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) effects in Escherichia coli. Mutat Res DNA Repair 383:137–142.  https://doi.org/10.1016/S0921-8777(96)00053-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Asad NR, Asad LMBO, Silva AB et al (1998) Hydrogen peroxide induces protection against lethal effects of cumene hydroperoxide in Escherichia coli cells: an Ahp dependent and OxyR independent system? Mutat Res DNA Repair 407:253–259.  https://doi.org/10.1016/S0921-8777(98)00010-X CrossRefPubMedGoogle Scholar
  8. 8.
    Loizeau K, De Brouwer V, Gambonnet B et al (2008) A genome-wide and metabolic analysis determined the adaptive response of Arabidopsis cells to folate depletion induced by methotrexate. Plant Physiol 148:2083–2095.  https://doi.org/10.1104/pp.108.130336 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang X, Ho SH, Zhu S et al (2017) Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. J Environ Manag 197:448–455.  https://doi.org/10.1016/j.jenvman.2017.04.014 CrossRefGoogle Scholar
  10. 10.
    Bucca G, Pothi R, Hesketh A et al (2017) Translational control plays an important role in the adaptive heat-shock response of Streptomyces coelicolor. Nucleic Acids Res 46:223925.  https://doi.org/10.1101/223925 CrossRefGoogle Scholar
  11. 11.
    Sakamoto-Hojo ET, Mello SS, Pereira E et al (2003) Gene expression profiles in human cells submitted to genotoxic stress. Mutat Res Rev Mutat Res 544:403–413.  https://doi.org/10.1016/j.mrrev.2003.07.004 CrossRefGoogle Scholar
  12. 12.
    Chen T, Li W, Hu X et al (2014) A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol 56:917–929.  https://doi.org/10.1093/pcp/pcv019 CrossRefGoogle Scholar
  13. 13.
    Xu X, Liu C, Zhao X et al (2014) Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.). Bull Environ Contam Toxicol 93:618–624.  https://doi.org/10.1007/s00128-014-1361-z CrossRefPubMedGoogle Scholar
  14. 14.
    Santa-Gonzalez GA, Gomez-Molina A, Arcos-Burgos M et al (2016) Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest. Redox Biol 9:124–133.  https://doi.org/10.1016/j.redox.2016.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sureda A, Capó X, Busquets-Cortés C, Tejada S (2018) Acute exposure to sunscreen containing titanium induces an adaptive response and oxidative stress in Mytilus galloprovincialis. Ecotoxicol Environ Saf 149:58–63.  https://doi.org/10.1016/j.ecoenv.2017.11.014 CrossRefPubMedGoogle Scholar
  16. 16.
    Stolárik T, Henselová M, Martinka M et al (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in Pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676.  https://doi.org/10.1007/s11090-015-9627-8 CrossRefGoogle Scholar
  17. 17.
    Zahoranová A, Henselová M, Hudecová D et al (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414.  https://doi.org/10.1007/s11090-015-9684-z CrossRefGoogle Scholar
  18. 18.
    Gateva S, Jovtchev G, Stankov A (2015) Salvia extract can decrease DNA damage induced by Zeocin. Int J Pharma Med Biol Sci 4:1–10Google Scholar
  19. 19.
    Chankova SG, Dimova E, Dimitrova M, Bryant PE (2007) Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. Radiat Environ Biophys 46:409–416.  https://doi.org/10.1007/s00411-007-0123-2 CrossRefGoogle Scholar
  20. 20.
    Dimova E, Dimitrova M, Miteva D et al (2009) Does single-dose cell resistance to the radio-mimetic zeocin correlate with a zeocin-induced adaptive response in Chlamydomonas reinhardtii strains? Radiat Environ Biophys 48:77–84.  https://doi.org/10.1007/s00411-008-0199-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Černák M, Kováčik D, Ráhel J et al (2011) Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys Control Fusion 53:124031.  https://doi.org/10.1088/0741-3335/53/12/124031 CrossRefGoogle Scholar
  22. 22.
    Černák M, Černáková L, Hudec I et al (2009) Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur Phys J Appl Phys 47:22806.  https://doi.org/10.1051/epjap/2009131 CrossRefGoogle Scholar
  23. 23.
    Hartmann A, Agurell E, Beevers C et al (2003) Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 18:45–51.  https://doi.org/10.1093/mutage/18.1.45 CrossRefPubMedGoogle Scholar
  24. 24.
    Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261.  https://doi.org/10.1385/MB:26:3:249 CrossRefPubMedGoogle Scholar
  25. 25.
    Gichner T, Patková Z, Száková J et al (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62:113–119.  https://doi.org/10.1016/j.envexpbot.2007.07.013 CrossRefGoogle Scholar
  26. 26.
    Šimor M, Ráhel J, Vojtek P et al (2002) Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl Phys Lett 81:2716–2718.  https://doi.org/10.1063/1.1513185 CrossRefGoogle Scholar
  27. 27.
    Navrátil Z, Trunec D, Šmíd R, Lazar L (2006) A software for optical emission spectroscopy-problem formulation and application to plasma diagnostics. Czechoslov J Phys 56:944–951.  https://doi.org/10.1007/s10582-006-0308-y CrossRefGoogle Scholar
  28. 28.
    Laux CO (2002) Radiation and nonequilibrium collisional-radiative models. In: Fletcher D, Charbonnier M, Sarma GSR, Magin T (eds) von Karman institute lecture series 2002–07, physico-chemical modeling of high enthalpy and plasma flows. Rhode-Saint-Genèse, BelgiumGoogle Scholar
  29. 29.
    Reuter S, Sousa JS, Stancu GD, Hubertus Van Helden JP (2015) Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets. Plasma Sources Sci Technol 24:054001.  https://doi.org/10.1088/0963-0252/24/5/054001 CrossRefGoogle Scholar
  30. 30.
    Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7:1822–1832.  https://doi.org/10.1039/c6ra24762h CrossRefGoogle Scholar
  31. 31.
    Gordon IE, Rothman LS, Hill C et al (2017) The HITRAN2016 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 203:3–69.  https://doi.org/10.1016/j.jqsrt.2017.06.038 CrossRefGoogle Scholar
  32. 32.
    Rahel J, Pavlik M, Holubcik L et al (1999) Relaxing phenomena in negative corona discharge: new aspects. Contrib Plasma Phys 39:501–513CrossRefGoogle Scholar
  33. 33.
    Banzet N, Richaud C, Deveaux Y et al (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J 13:519–527.  https://doi.org/10.1046/j.1365-313X.1998.00056.x CrossRefPubMedGoogle Scholar
  34. 34.
    Cortés F, Domínguez I, Mateos S et al (1990) Evidence for an adaptive response to radiation damage in plant cells conditioned with x-rays or incorporated tritium. Int J Radiat Biol 57:537–541.  https://doi.org/10.1080/09553009014552671 CrossRefPubMedGoogle Scholar
  35. 35.
    Murali Achary VM, Panda BB (2010) Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 25:201–209.  https://doi.org/10.1093/mutage/gep063 CrossRefPubMedGoogle Scholar
  36. 36.
    Olvera-Carrillo Y, Campos F, Reyes JL et al (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in arabidopsis. Plant Physiol 154:373–390.  https://doi.org/10.1104/pp.110.158964 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kopaskova M, Hadjo L, Yankulova B et al (2012) Extract of Lilium candidum L. Can modulate the genotoxicity of the antibiotic zeocin. Molecules 17:80–97.  https://doi.org/10.3390/molecules17010080 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Stanislav Kyzek
    • 1
  • Ľudmila Holubová
    • 1
  • Veronika Medvecká
    • 2
  • Juliána Tomeková
    • 2
  • Eliška Gálová
    • 1
  • Anna Zahoranová
    • 2
  1. 1.Department of Genetics, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Department of Experimental Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations