A Novel ICP Torch with Conical Geometry

  • Sina Alavi
  • Javad MostaghimiEmail author
Original Paper


This paper presents the development of a novel radio-frequency inductively coupled plasma (RF-ICP) torch. Computer simulations and experiments were employed to investigate the underlying phenomena which led to improved excitation temperature, electron density, robustness, and multielement detection limits of a new analytical ICP torch. Due to its conical geometry, compared to conventional torches, the new torch consumes 50–70% less argon and power. Additionally, the new torch has higher power density, better plasma stability, and better resistance against extinguishing factors. A comparison of time-lapse images of conventional and conical torches shows an enhancement in the plasma ignition process for the new torch. In agreement with simulations, spectroscopic measurements demonstrate that the new torch offers 1200 K higher excitation temperature compared to the conventional torch for the same power input. These improvements result in faster ionization/excitation of the sample particles as shown by the simulation results. In combination with improved particle trajectories inside plasma, this feature is expected to allow higher rates of analysis in single-particle ICP-mass spectrometry with improved sensitivity and accuracy.


Conical ICP torch Single-particle ICP-MS Sample residence time Analytical chemistry 



Financial support of Natural Sciences and Engineering Research Council (NSERC) of Canada is gratefully acknowledged.

Supplementary material

11090_2018_9948_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1118 kb)


  1. 1.
    Thomas R (2013) Practical guide to ICP-MS: a tutorial for beginners. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Montaser A (1998) Inductively coupled plasma mass spectrometry. Wiley, New YorkGoogle Scholar
  3. 3.
    Montaser A (1992) Inductively coupled plasmas in analytical atomic spectrometry, 2nd edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Wendt RH, Fassel VA (1966) Atomic absorption with induction-coupled plasmas. Anal Chem 38(2):337–338. CrossRefGoogle Scholar
  5. 5.
    Boumans PWJM, De Boer FJ (1972) Studies of flame and plasma torch emission for simultaneous multi-element analysis—I: preliminary investigations. Spectrochim Acta Part B 27(9):391–414. CrossRefGoogle Scholar
  6. 6.
    Hoare HC, Mostyn RA (1967) Emission spectrometry of solutions and powders with a high-frequency plasma source. Anal Chem 39(10):1153–1155. CrossRefGoogle Scholar
  7. 7.
    Hittorf W (1884) Ueber die electricitaetsleitung der gase. Ann Phys (Berlin, Ger) 257(1):90–139CrossRefGoogle Scholar
  8. 8.
    Thomson J (1891) XLI. On the discharge of electricity through exhausted tubes without electrodes. Lond Edinb Dublin Philos Mag J Sci 32(197):321–336CrossRefGoogle Scholar
  9. 9.
    Babat GI (1947) Electrodeless discharges and some allied problems. J Inst Electr Eng Part III Radio Commun Eng 94(27):27–37Google Scholar
  10. 10.
    Reed TB (1961) Induction-coupled plasma torch. J Appl Phys (Melville, NY, USA) 32(5):821–824CrossRefGoogle Scholar
  11. 11.
    Reed TB (1961) Growth of refractory crystals using the induction plasma torch. J Appl Phys (Melville, NY, USA) 32(12):2534–2535CrossRefGoogle Scholar
  12. 12.
    Greenfield S, Jones IL, Berry C (1964) High-pressure plasmas as spectroscopic emission sources. Analyst 89(1064):713–720CrossRefGoogle Scholar
  13. 13.
    Greenfield S, Jones IL, Berry C, Bunch L (1965) The high frequency torch: some facts, figures, and thoughts. Anal Chem Soc Proc 2:111Google Scholar
  14. 14.
    Wendt RH, Fassel VA (1965) Induction-coupled plasma spectrometric excitation source. Anal Chem 37(7):920–922CrossRefGoogle Scholar
  15. 15.
    Dickinson GW, Fassel VA (1969) Emission-spectrometric detection of the elements at the nanogram per milliliter level using induction-coupled plasma excitation. Anal Chem 41(8):1021–1024. CrossRefGoogle Scholar
  16. 16.
    Greenfield S, Smith PB (1972) The determination of trace metals in microlitre samples by plasma torch excitation: with special reference to oil, organic compounds and blood samples. Anal Chim Acta 59(3):341–348. CrossRefPubMedGoogle Scholar
  17. 17.
    Scott RH, Fassel VA, Kniseley RN, Nixon DE (1974) Inductively coupled plasma-optical emission analytical spectrometry. Anal Chem 46(1):75–80CrossRefGoogle Scholar
  18. 18.
    Greenfield S, Jones IL, McGeachin HM, Smith PB (1975) Automatic multi-sample simultaneous multi-element analysis with a h.f. plasma torch and direct reading spectrometer. Anal Chim Acta 74(2):225–245. CrossRefGoogle Scholar
  19. 19.
    Greenfield S (2000) Invention of the annular inductively coupled plasma as a spectroscopic source. J Chem Educ 77(5):584. CrossRefGoogle Scholar
  20. 20.
    Genna JL, Barnes RM, Allemand CD (1977) Modified inductively coupled plasma arrangement for easy ignition and low gas consumption. Anal Chem 49(9):1450–1453. CrossRefGoogle Scholar
  21. 21.
    Allemand CD, Barnes RM (1977) A study of inductively coupled plasma torch configurations. Appl Spectrosc 31(5):434–443CrossRefGoogle Scholar
  22. 22.
    Savage RN, Hieftje GM (1979) Development and characterization of a miniature inductively coupled plasma source for atomic emission spectrometry. Anal Chem 51(3):408–413. CrossRefGoogle Scholar
  23. 23.
    Ebdon L, Mowthorpe DJ, Cave MR (1980) A versatile new torch for inductively coupled plasma spectrometry. Anal Chim Acta 115:171–178. CrossRefGoogle Scholar
  24. 24.
    Boulos M, Lesinski J, Barnes R (1982) Velocity field measurements in an inductively coupled plasma. Sherbrooke Univ., Quebec (Canada). Dept. of Chemical EngineeringGoogle Scholar
  25. 25.
    Weiss AD, Savage RN, Hieftje GM (1981) Development and characterization of a 9-mm inductively-coupled argon plasma source for atomic emission spectrometry. Anal Chim Acta 124(2):245–258. CrossRefGoogle Scholar
  26. 26.
    Montaser A, Huse GR, Wax RA, Chan SK, Golightly DW, Kane JS, Dorrzapf AF (1984) Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry. Anal Chem 56(2):283–288. CrossRefGoogle Scholar
  27. 27.
    Rezaaiyaan R, Hieftje GM, Anderson H, Kaiser H, Meddings B (1982) Design and construction of a low-flow, low-power torch for inductively coupled plasma spectrometry. Appl Spectrosc 36(6):627–631CrossRefGoogle Scholar
  28. 28.
    van der Plas PSC, de Galan L (1984) A radiatively cooled torch for ICP-AES using 1 min−1 of argon. Spectrochim Acta Part B 39(9–11):1161–1169. CrossRefGoogle Scholar
  29. 29.
    Pfeifer T, Janzen R, Steingrobe T, Sperling M, Franze B, Engelhard C, Buscher W (2012) Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques. Spectrochim Acta Part B 76:48–55. CrossRefGoogle Scholar
  30. 30.
    Barnes RM, Nikdel S (1976) Temperature and velocity profiles and energy balances for an inductively coupled plasma discharge in nitrogen. J Appl Phys (Melville, NY, USA) 47(9):3929–3934. CrossRefGoogle Scholar
  31. 31.
    Lindner H, Murtazin A, Groh S, Niemax K, Bogaerts A (2011) Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma. Anal Chem 83(24):9260–9266. CrossRefPubMedGoogle Scholar
  32. 32.
    Miyahara H, Iwai T, Kaburaki Y, Kozuma T, Shigeta K, Okino A (2014) A new air-cooled argon/helium-compatible inductively coupled plasma torch. Anal Sci 30(2):231–235. CrossRefPubMedGoogle Scholar
  33. 33.
    Kornblum GR, Van der Waa W, De Galan L (1979) Reduction of argon consumption by a water cooled torch in inductively coupled plasma emission spectrometry. Anal Chem 51(14):2378–2381. CrossRefGoogle Scholar
  34. 34.
    Ripson PAM, de Galan L, de Ruiter JW (1982) An inductively coupled plasma using 1 min of argon. Spectrochim Acta Part B 37(8):733–738. CrossRefGoogle Scholar
  35. 35.
    Praphairaksit N, Wiederin DR, Houk RS (2000) An externally air-cooled low-flow torch for inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 55(8):1279–1293. CrossRefGoogle Scholar
  36. 36.
    Scheffer A, Brandt R, Engelhard C, Evers S, Jakubowski N, Buscher W (2006) A new ion source design for inductively coupled plasma mass spectrometry (ICP-MS). J Anal At Spectrom 21(2):197–200. CrossRefGoogle Scholar
  37. 37.
    Engelhard C, Scheffer A, Maue T, Hieftje GM, Buscher W (2007) Application of infrared thermography for online monitoring of wall temperatures in inductively coupled plasma torches with conventional and low-flow gas consumption. Spectrochim Acta Part B 62(10):1161–1168. CrossRefGoogle Scholar
  38. 38.
    Engelhard C, Scheffer A, Nowak S, Vielhaber T, Buscher W (2007) Trace element determination using static high-sensitivity inductively coupled plasma optical emission spectrometry (SHIP-OES). Anal Chim Acta 583(2):319–325. CrossRefPubMedGoogle Scholar
  39. 39.
    Klostermeier A, Engelhard C, Evers S, Sperling M, Buscher W (2005) New torch design for inductively coupled plasma optical emission spectrometry with minimised gas consumption. J Anal At Spectrom 20(4):308–314. CrossRefGoogle Scholar
  40. 40.
    van Der Plas PSC, de Waaij AC, de Galan L (1985) Analytical evaluation of an air-cooled 1 min−1 argon ICP. Spectrochim Acta Part B 40(10):1457–1466. CrossRefGoogle Scholar
  41. 41.
    Ripson PAM, de Galan L (1983) Empirical power balances for conventional and externally cooled inductively-coupled argon plasmas. Spectrochim Acta Part B 38(5–6):707–726. CrossRefGoogle Scholar
  42. 42.
    Alavi S, Khayamian T, Mostaghimi J (2018) Conical torch: the next-generation inductively coupled plasma source for spectrochemical analysis. Anal Chem 90(5):3036–3044. CrossRefPubMedGoogle Scholar
  43. 43.
    Smith LM, Keefer DR, Sudharsanan S (1988) Abel inversion using transform techniques. J Quant Spectrosc Radiat Transfer 39(5):367–373CrossRefGoogle Scholar
  44. 44.
    Norlén G (1973) Wavelengths and energy levels of Ar I and Ar II based on new interferometric measurements in the region 3400–9800 Å. Phys Scr 8(6):249CrossRefGoogle Scholar
  45. 45.
    Wende B (1968) Optical transition probabilities of the configurations 3p 54s–3p 55p of argon I. Physikalisch-Technische Bundesanstalt, BerlinGoogle Scholar
  46. 46.
    Furuta N, Nojiri Y, Fuwa K (1985) Spatial profile measurement of electron number densities and analyte line intensities in an inductively coupled plasma. Spectrochim Acta Part B 40(3):423–434CrossRefGoogle Scholar
  47. 47.
    Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, New YorkGoogle Scholar
  48. 48.
    Mermet J (1991) Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics. Anal Chim Acta 250:85–94CrossRefGoogle Scholar
  49. 49.
    Olesik JW, Hobbs SE (1994) Monodisperse dried microparticulate injector: a new tool for studying fundamental processes in inductively coupled plasmas. Anal Chem 66(20):3371–3378CrossRefGoogle Scholar
  50. 50.
    Olesik JW (1997) Investigating the fate of individual sample droplets in inductively coupled plasmas. Appl Spectrosc 51(5):158A–175ACrossRefGoogle Scholar
  51. 51.
    Groh S, Garcia CC, Murtazin A, Horvatic V, Niemax K (2009) Local effects of atomizing analyte droplets on the plasma parameters of the inductively coupled plasma. Spectrochim Acta Part B 64(3):247–254CrossRefGoogle Scholar
  52. 52.
    Aghaei M, Flamigni L, Lindner H, Günther D, Bogaerts A (2014) Occurrence of gas flow rotational motion inside the ICP torch: a computational and experimental study. J Anal At Spectrom 29(2):249–261CrossRefGoogle Scholar
  53. 53.
    Laborda F, Bolea E, Jiménez-Lamana J (2013) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. ACS Publications, Washington, DCGoogle Scholar
  54. 54.
    Garcia CC, Murtazin A, Groh S, Horvatic V, Niemax K (2010) Characterization of single Au and SiO2 nano-and microparticles by ICP-OES using monodisperse droplets of standard solutions for calibration. J Anal At Spectrom 25(5):645–653CrossRefGoogle Scholar
  55. 55.
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33(7):323–332. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial Engineering, Center for Advanced Coating Technologies (CACT), Faculty of Applied Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations