Advertisement

Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 75–87 | Cite as

Evaluation of Energy Balance in a Batch and Circulating Non-thermal Plasma Reactors During Organic Pollutant Oxidation in Aqueous Solution

  • Elie AcayankaEmail author
  • Jean-Baptiste Tarkwa
  • Samuel Laminsi
Original Paper
  • 49 Downloads

Abstract

This work presents the treatment of an organic waste solution using gliding arc plasma in moist air, which is an excellent source of oxidizing species. Herein particular attention is devoted to the comparative energy balance between two model reactors in order to optimize the process and get closer to a large-scale application. The model pollutant Amoxicillin is an antibiotic agent largely used against allergies and has been found in wastewaters. Its degradation is studied by exposing basic solutions to underline the role of the formed OH radicals and H2O2 reactive species. The degradation of AMX to give CO2, H2O, and sulfate is optimized within 120 min with a resulting abatement of 78% and 98% for batch and circulation reactors respectively. The kinetic study suggests a pseudo-first order process with an apparent rate constant three times higher in circulation mode compared to batch mode reactor. Accordingly, the energetic yield is 2.5 times better in the circulation system, owing to more consumption of plasma-generated species with respect to the high reactive area, whereas in batch mode reactor, AMX degradation is occurred at the plasma-liquid interface, and thus limited by the mass transfer process.

Keywords

Non-thermal plasma Reactors Plasma-liquid interaction Energy balance Amoxicillin 

Notes

Acknowledgements

The authors are grateful to “Service de la Cooperation et d’Action Culturelle” (SCAC) of the Cameroon French Embassy for the grant awarded to J.B. Tarkwa.

References

  1. 1.
    Hnatiuc E (2002) Procédés électriques de mesure et de traitement des polluants. Editions Tec & Doc Lavoisier, Paris, p 370Google Scholar
  2. 2.
    Magureanu M, Mandache NB, Parvulescu VI (2015) Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res 81:124–136CrossRefGoogle Scholar
  3. 3.
    Magureanu M, Piroi D, Mandache NB, David V, Medvedovici A, Parvulescu VI (2010) Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment. Water Res 44:3445–3453CrossRefGoogle Scholar
  4. 4.
    Magureanu M, Piroia D, Mandache NB, David V, Bradu Medvedovici A, Parvulescu C VI (2011) Degradation of antibiotics in water by non- thermal plasma treatment. Water Res 45:3407–3416CrossRefGoogle Scholar
  5. 5.
    Vanraes P, Nikiforov A, Leys C (2016) Electrical discharge in water treatment technology for micropollutant decomposition. In: Mieno T (ed) Plasma science and technology: progress in physical states and chemical reactions. IntechOpen, p 457–506.  https://doi.org/10.5772/61830
  6. 6.
    Joshi RP, Thagard SM (2013) Streamer-like electrical discharges in water: part II environmental applications. Plasma Chem Plasma Process 33:17–49CrossRefGoogle Scholar
  7. 7.
    Sun ZW, Zhu JJ, Li ZS, Aldén M, Leipold F, Salewski M, Kusano Y (2013) Optical diagnostics of a gliding arc. Opt Express 11:6028–6044CrossRefGoogle Scholar
  8. 8.
    Zhu J et al (2015) Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge. Appl Phys Lett 106:044101CrossRefGoogle Scholar
  9. 9.
    Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-yardimci A (1999) Gliding arc gas discharge. Prog Energy Combust Sci 25:211–231CrossRefGoogle Scholar
  10. 10.
    Kuznetsova IV, Kalashnikov NY, Gutsol AF, Fridman AA, Kennedy LA (2002) Effect of ‘overshooting’ in the transitional regimes of the low-current gliding arc discharge. J Appl Phys 92:4231–4237CrossRefGoogle Scholar
  11. 11.
    Yan JH, Peng Z, Lu SY, Du CM, Li XD, Chen T, Ni MJ, Cen KF (2007) Destruction of PCDD/Fs by gliding arc discharges. J Environ Sci 19:1404–1408CrossRefGoogle Scholar
  12. 12.
    Mutaf-Yardimci O, Saveliev AV, Fridman AA, Kennedy LA (2000) Thermal and non-thermal regimes of gliding arc discharge in air flow. J Appl Phys 87:1632–1641CrossRefGoogle Scholar
  13. 13.
    Popov NA (2006) Simulation of a longitudinal glow discharge in a hot air flow at atmospheric pressure. Plasma Phys Rep 32:264–272Google Scholar
  14. 14.
    Prevosto L, Kelly H, Mancinelli B, Chamorro JC, Cejas E (2015) On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime. Phys Plasmas 22:023504CrossRefGoogle Scholar
  15. 15.
    Staack D, Farouk B, Gutsol A, Fridman A (2005) Characterization of a dc atmospheric pressure normal glow discharge. Plasma Sources Sci Technol 14:700–711CrossRefGoogle Scholar
  16. 16.
    Verreycken T, Schram DC, Leys C, Bruggeman P (2010) Spectroscopic study of an atmospheric pressure dc glow discharge with a water electrode in atomic and molecular gases. Plasma Sources Sci Technol 19:045004–1/9CrossRefGoogle Scholar
  17. 17.
    Doubla A, Burlica R, Hnatiuc E, Brisset JL (2005) Energy balance for a quenched plasma reactor of the gliding arc type at atmospheric pressure. Phys Chem News 25:135–137Google Scholar
  18. 18.
    Helms JW (1970) Rapid measurement of organic pollution by total organic carbon and comparisons with other techniques. Open-File Report 1:70–160.  https://doi.org/10.3133/ofr70160 Google Scholar
  19. 19.
    Lesueur H et al (1988) Dispositif de generation de plasma basse temperature par formation de decharges electriques glissantes. Fr Pattern 2639172Google Scholar
  20. 20.
    Czernichowski A (1994) Gliding arc: application to engineering and environmental control. Pure Appl Chem 66:1301–1310CrossRefGoogle Scholar
  21. 21.
    Kong C, Gao J, Zhu J, Ehn A, Aldén M, Li Z (2017) Characterization of an AC glowtype gliding arc discharge in atmospheric air with a current-voltage lumped model. Phys Plasmas 24:093515CrossRefGoogle Scholar
  22. 22.
    Zhu J, Sun Z, Li Z, Ehn A, Aldén M, Salewski M, Leipold F, Kusano Y (2014) Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements. J Phys D Appl Phys 47:295203CrossRefGoogle Scholar
  23. 23.
    Tiya-Djowe A, Acayanka E, Lontio-Nkouongfo G, Laminsi S, Gaigneaux EM (2015) Enhanced discolouration of methyl violet 10B in a gliding arc plasma reactor by the maghemite nanoparticles used as the heterogeneous catalyst. J Environ Chem Eng 3:953–960CrossRefGoogle Scholar
  24. 24.
    Trifia B, Cavadias S, Bellakhala N (2011) Decoloration of Methyl Red by gliding arc discharge. Desalin Water Treat 25:65–70CrossRefGoogle Scholar
  25. 25.
    Hentit H, Ghezzar MR, Womes M, Jumas JC, Addou A, Ouali MS (2014) Plasma-catalytic degradation of anthraquinonic acid green 25 in solution by gliding arc discharge plasma in the presence of tin containing aluminophosphate molecular sieves. J Mol Catal A Chem 390:37–44CrossRefGoogle Scholar
  26. 26.
    Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2009) Enhancement of the bleaching and degradation of textile wastewaters by Gliding arc discharge plasma in the presence of TiO2 catalyst. J Hazard Mater 164:1266–1274CrossRefGoogle Scholar
  27. 27.
    Brisset JL, Hnatiuc E (2012) Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem Plasma Process 32:655–674CrossRefGoogle Scholar
  28. 28.
    Shih KY, Locke BR (2010) Chemical and physical characteristics of pulsed electrical discharge within gas bubbles in aqueous solutions. Plasma Chem Plasma Process 36:767–781Google Scholar
  29. 29.
    Janda M, Martišovitš V, Hensel K, Machala Z (2016) Generation of Antimicrobial NOx by Atmospheric Air Transient Spark Discharge. Plasma Chem Plasma Process 36:767–781CrossRefGoogle Scholar
  30. 30.
    Du CM, Yan JH, Cheron B (2007) Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Sci Technol 16:791–797CrossRefGoogle Scholar
  31. 31.
    Locke BR, Thagard SM (2012) Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water. Plasma Chem Plasma Process 32:875–917CrossRefGoogle Scholar
  32. 32.
    Benstaali J, Boubert B, Cheron P, Addou A, Brisset JL (2002) Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air. Plasma Chem Plasma Process 22:553–571CrossRefGoogle Scholar
  33. 33.
    Benstaali J, Boubert B, Cheron P, Addou A, Brisset JL (2002) Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air. Plasma Chem Plasma Process 22:553–571CrossRefGoogle Scholar
  34. 34.
    Foster JE (2017) Plasma-based water purification: challenges and prospects for future. J Phys D Appl Phys 24:0–16Google Scholar
  35. 35.
    Roy NC, Hafez MG, Talukder MR (2016) Characterization of atmospheric pressure H2O/O2 gliding arc plasma for the production of OH and O radicals. Phys Plasmas 23:1–18CrossRefGoogle Scholar
  36. 36.
    Oturan N, Ganiyu SO, Raffy S, Oturan MA (2017) Sub-stoichiometric titanium oxide as a new anode material for electro-Fenton process: application to electrocatalytic destruction of antibiotic amoxicillin. Appl Catal B Environ 217:214–223CrossRefGoogle Scholar
  37. 37.
    Ganiyu SO, Oturan N, Raffy S, Cretin M, Esmilaire R, Van Hullebusch E, Esposito G, Oturan MA (2016) Sub-stoichiometric titanium oxide (Ti4O7) as a suitable ceramic anode for electrooxidation of organic pollutants: a case study of kinetics, mineralization and toxicity assessment of amoxicillin. Water Res 106:171–182CrossRefGoogle Scholar
  38. 38.
    Boles M, Cengel Y (2014) Thermodynamics an engineering approach, 8th edn. McGraw-Hill Education, New York, p 1024Google Scholar
  39. 39.
    Franclemont J, Thagard SM (2014) Pulsed electrical discharges in water: can nonvolatile compounds diffuse into the plasma channel, Plasma Chem. Plasma Process 34:705–719CrossRefGoogle Scholar
  40. 40.
    Franclemont J, Fan X, Thagard SM (2015) Physicochemical mechanisms of plasmaliquid interactions within plasma channels in liquid. J Phys D Appl Phys 48:424004CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elie Acayanka
    • 1
    Email author
  • Jean-Baptiste Tarkwa
    • 1
    • 2
  • Samuel Laminsi
    • 1
  1. 1.Laboratoire de Chimie Physique et Analytique Appliquée, Département de Chimie InorganiqueUniversité de Yaoundé IYaoundéCameroon
  2. 2.Laboratoire Géomatériaux et EnvironnementUniversité Paris-EstMarne-la-Vallée Cedex 2France

Personalised recommendations