Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 339–358 | Cite as

Peculiarities of Si and SiO2 Etching Kinetics in HBr + Cl2 + O2 Inductively Coupled Plasma

  • Byung Jun Lee
  • Alexander Efremov
  • Jihun Kim
  • Changmok Kim
  • Kwang-Ho KwonEmail author
Original Paper


Peculiarities of the etching kinetics and mechanisms for Si and SiO2 in the HBr + Cl2 + O2 inductively coupled plasma were investigated by analyzing the relationships between etching rates and fluxes of active species. The data on plasma parameters, plasma chemistry, and the steady-state plasma composition were obtained using both Langmuir probe diagnostics and 0-dimensional plasma modeling. It was found that an increase in the Cl2 mixing ratio and input power causes similar trends in the changes in ion energy flux and halogen atom flux but results in different tendencies for both Si and SiO2 etching rates. It was shown that the influence of input process parameters (HBr/Cl2 mixing ratio, input power, and bias power) on the Si and SiO2 etching kinetics may be adequately described in terms of the oxygen atom flux-sensitive reaction probability. The latter directly correlates with the oxygen atom flux/ion energy flux ratio.


Si and SiO2 etching rates Halogen atom flux Ion energy flux Oxygen atom flux Effective reaction probability 



This research was supported by MOTIE [Ministry of Trade, Industry& Energy (No. 10052890)] and the KSRC (Korea Semiconductor Research Consortium) support program for the development of future semiconductor devices.


  1. 1.
    Wolf S, Tauber RN (2000) Silicon processing for the VLSI Era. Volume 1. Process technology. Lattice Press, New YorkGoogle Scholar
  2. 2.
    Rooth JR (1995) Industrial plasma engineering. IOP Publishing Ltd., PhiladelphiaCrossRefGoogle Scholar
  3. 3.
    Sugano T (1990) Applications of plasma processes to VLSI technology. John Wiley & Sons, University of Michigan, New YorkGoogle Scholar
  4. 4.
    Sze SM (1988) VLSI technology. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Coburn JW (1982) Plasma etching and reactive ion etching. AVS monograph series. American Institute of Physics (AIP), New YorkGoogle Scholar
  6. 6.
    Jansen H, Gardeniers H, deBoer M, Elwenspoek M, Fluitman J (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6(1):14–29CrossRefGoogle Scholar
  7. 7.
    Nojiri K (2015) Dry etching technology for semiconductors. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Vitale SA, Chae H, Sawin HH (2001) Silicon etching yields in F2, Cl2, Br2, and HBr high density plasmas. J Vac Sci Technol, A 19(5):2197–2206CrossRefGoogle Scholar
  9. 9.
    Cheng CC, Guinn KV, Herman IP, Donnelly VM (1995) Competitive halogenation of silicon surfaces in HBr/Cl2 plasmas studied ray photoelectron-spectroscopy and in situ, real-time, pulsed laser-induced thermal-desorption. J Vac Sci Technol, A 13(4):1970–1976CrossRefGoogle Scholar
  10. 10.
    Cunge G, Kogelschatz M, Joubert O, Sadeghi N (2005) Plasma-wall interactions during silicon etching processes in high-density HBr/Cl2/O2 plasmas. Plasma Sources Sci Technol 14(2):S42–S52CrossRefGoogle Scholar
  11. 11.
    Tokashiki K, Ikawa E, Hashimoto T, Kikkawa T, Teraoka Y, Nishiyama I (1991) Influence of halogen plasma atmosphere on SiO2 etching characteristics. Jpn J Appl Phys 1 30(11b):3174–3177CrossRefGoogle Scholar
  12. 12.
    Yeom GY, Ono Y, Yamaguchi T (1992) Polysilicon etchback plasma process using HBr, Cl2, and SF6 gas-mixtures for deep-trench isolation. J Electrochem Soc 139(2):575–579CrossRefGoogle Scholar
  13. 13.
    Chuang MC, Coburn JW (1990) Molecular-beam study of gas-surface chemistry in the ion-assisted etching of silicon with atomic and molecular-hydrogen and chlorine. J Vac Sci Technol, A 8(3):1969–1976CrossRefGoogle Scholar
  14. 14.
    Donnelly VM, Klemens FP, Sorsch TW, Timp GL, Baumann FH (1999) Oxidation of Si beneath thin SiO2 layers during exposure to HBr/O2 plasmas, investigated by vacuum transfer x-ray photoelectron spectroscopy. Appl Phys Lett 74(9):1260–1262CrossRefGoogle Scholar
  15. 15.
    Kim DK, Kim YK, Lee H (2007) A study of the role of HBr and oxygen on the etch selectivity and the post-etch profile in a polysilicon/oxide etch using HBr/O2 based high density plasma for advanced DRAMs. Mat Sci Semiconduct Proc 10(1):41–48CrossRefGoogle Scholar
  16. 16.
    Belen RJ, Gomez S, Kiehlbauch M, Aydil ES (2006) Feature scale model of Si etching in SF6/O2/HBr plasma and comparison with experiments. J Vac Sci Technol, A 24(2):350–361CrossRefGoogle Scholar
  17. 17.
    Mcnevin SC (1990) Radio-frequency plasma-etching of Si/SiO2 by Cl2/O2—improvements resulting from the time modulation of the processing gases. J Vac Sci Technol, B 8(6):1185–1191CrossRefGoogle Scholar
  18. 18.
    Tinck S, Boullart W, Bogaerts A (2011) Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating. Plasma Sources Sci Technol 20:045012CrossRefGoogle Scholar
  19. 19.
    Efremov A, Kim Y, Lee HW, Kwon KH (2011) A comparative study of HBr-Ar and HBr-Cl2 plasma chemistries for dry etch applications. Plasma Chem Plasma Proc 31(2):259–271CrossRefGoogle Scholar
  20. 20.
    Efremov A, Lee J, Kwon KH (2017) A comparative study of CF4, Cl2 and HBr + Ar inductively coupled plasmas for dry etching applications. Thin Solid Films 629:39CrossRefGoogle Scholar
  21. 21.
    Bazin A, Pargon E, Mellhaoui X, Perret D, Mortini B, Joubert O (2008) Advances in resist materials and processing technology XXV. In: Henderson CL (ed) Proceedings of the SPIE 6923:692337Google Scholar
  22. 22.
    Pargon E, Menguelti K, Martin M, Bazin A, Chaix-Pluchery O, Sourd C, Derrough S, Lill T, Joubert O (2009) Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists. J Appl Phys 105:(9)CrossRefGoogle Scholar
  23. 23.
    Bestwick TD, Oehrlein GS (1990) Reactive ion etching of silicon using bromine containing plasmas. J Vac Sci Technol, A 8(3):1696–1701CrossRefGoogle Scholar
  24. 24.
    Jin WD, Vitale SA, Sawin HH (2002) Plasma-surface kinetics and simulation of feature profile evolution in Cl2 + HBr etching of polysilicon. J Vac Sci Technol, A 20(6):2106–2114CrossRefGoogle Scholar
  25. 25.
    Lee HW, Kim M, Min NK, Efremov A, Lee CW, Kwon KH (2008) Etching characteristics and mechanism of InP in inductively coupled HBr/Ar plasma. Jpn J Appl Phys 47(8):6917–6922CrossRefGoogle Scholar
  26. 26.
    Johnson EO, Malter L (1950) a floating double probe method for measurements in gas discharges. Phys Rev 80(1):58–68CrossRefGoogle Scholar
  27. 27.
    Sugavara M (1998) Plasma etching: fundamentals and applications. Oxford University Press, New YorkGoogle Scholar
  28. 28.
    Efremov A, Min NK, Choi BG, Baek KH, Kwon KH (2008) Model-based analysis of plasma parameters and active species kinetics in Cl2/X (X = Ar, He, N2) inductively coupled plasmas. J Electrochem Soc 155(12):D777–D782CrossRefGoogle Scholar
  29. 29.
    Kwon KH, Efremov A, Kim M, Min NK, Jeong J, Kim K (2010) A model-based analysis of plasma parameters and composition in HBr/X (X = Ar, He, N2) inductively coupled plasmas. J Electrochem Soc 157(5):H574–H579CrossRefGoogle Scholar
  30. 30.
    Lee BJ, Lee BJ, Efremov A, Yang JW, Kwon KH (2016) Etching characteristics and mechanisms of MoS2 2D crystals in O2/Ar inductively coupled plasma. J Nanosci Nanotechnol 16(11):11201–11209CrossRefGoogle Scholar
  31. 31.
    Efremov AM, Kim GH, Kim JG, Bogomolov AV, Kim CI (2007) On the applicability of self-consistent global model for the characterization of Cl2/Ar inductively coupled plasma. Microelectron Eng 84:136–143CrossRefGoogle Scholar
  32. 32.
    Hsu CC, Nierode MA, Coburn JW, Graves DB (2006) Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas. J Phys D Appl Phys 39(15):3272–3284CrossRefGoogle Scholar
  33. 33.
    Lee C, Lieberman MA (1995) Global-model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges. J Vac Sci Technol, A 13(2):368–380CrossRefGoogle Scholar
  34. 34.
    Kwon KH, Efremov A, Yun SJ, Chun I, Kim K (2014) Dry etching characteristics of Mo and Al2O3 films in O2/Cl2/Ar inductively coupled plasmas. Thin Solid Films 552:105–110CrossRefGoogle Scholar
  35. 35.
    Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New YorkGoogle Scholar
  36. 36.
    Itikawa Y, Mason N (2005) Cross sections for electron collisions with water molecules. J Phys Chem Ref Data 34(1):1–22CrossRefGoogle Scholar
  37. 37.
    Morgan WL (1992) A critical-evaluation of low-energy electron-impact cross-sections for plasma processing modeling. I: Cl2, F2, and HCL. Plasma Chem Plasma P 12(4):449–476CrossRefGoogle Scholar
  38. 38.
    NIST Chemical Kinetics Database Accessed 1 Nov 2018
  39. 39.
    Corr CS, Despiau-Pujo E, Chabert P, Graham WG, Marro FG, Graves DB (2008) Comparison between fluid simulations and experiments in inductively coupled argon/chlorine plasmas. J Phys D Appl Phys 41:(18)CrossRefGoogle Scholar
  40. 40.
    Curley GA, Gatilova L, Guilet S, Bouchoule S, Gogna GS, Sirse N, Karkari S, Booth JP (2010) Surface loss rates of H and Cl radicals in an inductively coupled plasma etcher derived from time-resolved electron density and optical emission measurements. J Vac Sci Technol, A 28(2):360–372CrossRefGoogle Scholar
  41. 41.
    Kota GP, Coburn JW, Graves DB (1999) Heterogeneous recombination of atomic bromine and fluorine. J Vac Sci Technol A 17(1):282–290CrossRefGoogle Scholar
  42. 42.
    Serdyuk NK, Gutorov VV, Panfilov VN (1981) Studies of the reactions of Br(2P3/2) and Br(2P1/2) with SiH4. React Kinet Catal L 16(4):393–397CrossRefGoogle Scholar
  43. 43.
    Wood BJ, Wise H (1961) Kinetics of hydrogen atom recombination on surfaces. J Phys Chem-Us 65(11):1976CrossRefGoogle Scholar
  44. 44.
    Ashida S, Lieberman MA (1997) Spatially averaged (global) model of time modulated high density chlorine plasmas. Jpn J Appl Phys 36(2):854–861CrossRefGoogle Scholar
  45. 45.
    Jang H, Efremov A, Kim D, Kang S, Yun SJ, Kwon KH (2012) Etching characteristics and mechanisms of TiO2 thin films in HBr/Ar and Cl2/Ar inductively-coupled plasmas. Plasma Chem Plasma Proc 32(2):333–342CrossRefGoogle Scholar
  46. 46.
    Gray DC, Tepermeister I, Sawin HH (1993) Phenomenological modeling of ion-enhanced surface kinetics in fluorine-based plasma-etching. J Vac Sci Technol, B 11(4):1243–1257CrossRefGoogle Scholar
  47. 47.
    Lee C, Graves DB, Lieberman MA (1996) Role of etch products in polysilicon etching in a high-density chlorine discharge. Plasma Chem Plasma Proc 16(1):99–120CrossRefGoogle Scholar
  48. 48.
    Efremov AM, Kim DP, Kim CI (2004) Simple model for ion-assisted etching using Cl2–Ar inductively coupled plasma: effect of gas mixing ratio. IEEE Trans Plasma Sci 32(3):1344–1351CrossRefGoogle Scholar
  49. 49.
    Ito T, Karahashi K, Kang S-Y, Hamaguchi S (2010) Evaluation of Si etching yields by Cl+, Br+, and HBr+ ion irradiation. J Phys: Conf Ser 232:012021Google Scholar
  50. 50.
    Lide DR (1998–1999) Handbook of chemistry and physics. CRC Press, New YorkGoogle Scholar
  51. 51.
    Chapman B (1980) Glow discharge processes: sputtering and plasma etching. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Byung Jun Lee
    • 1
  • Alexander Efremov
    • 2
  • Jihun Kim
    • 1
  • Changmok Kim
    • 1
  • Kwang-Ho Kwon
    • 1
    Email author
  1. 1.Department of Control and Instrumentation EngineeringKorea UniversitySejongSouth Korea
  2. 2.Department of Electronic Devices and Materials TechnologyState University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations