Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 205–226 | Cite as

Hybrid Numerical Simulation of Decomposition of SF6 Under Negative DC Partial Discharge Process

  • F. ZengEmail author
  • M. Zhang
  • D. Yang
  • J. Tang
Original Paper


To reveal the decomposition mechanism of SF6 under negative DC partial discharge (PD), a PD hybrid numerical model of SF6 was constructed based on fluid dynamics and plasma chemical reaction, and then the electronic properties under the single PD current pulse were systematically discussed. The results show that the area with higher average electron energy is located near the tip of the needle, and the electron density is small in the cathode sheath and mainly concentrated close to the needle electrode. When PD current pulse rises, the electron density increases as the time of PD increases, and the center of the electron cloud is located on the axis of symmetry. When PD current pulse drops, with the development of the PD, it shows that the density of electron number decreases gradually and the electron cloud moves away from the axis of symmetry gradually, in addition, the generation and dissipation of electron almost occurs in the same area.


SF6 Partial discharge electronic properties Decomposition mechanism Hybrid numerical 


  1. 1.
    Tang J, Yang D, Zeng F et al (2018) Correlation characteristics between gas pressure and SF6 decomposition under negative DC partial discharge. IET Gener Transm Distrib 12(5):1240–1246CrossRefGoogle Scholar
  2. 2.
    Riechert U, Straumann U, Gremaud R, et al (2016) Compact gas-insulated systems for high voltage direct current transmission: Design and testing. In: IEEE/PES transmission and distribution conference and expositionGoogle Scholar
  3. 3.
    Braun JM, Chu FY, Seethapathy R (1987) Characterization of GIS spacers exposed to SF6 decomposition products. IEEE Trans Electr Insul 22(2):187–193CrossRefGoogle Scholar
  4. 4.
    Kobayashi T, Mori S, Koshiishi M, Ninomiya K, Matsuki M, Yokoyama H, Hara T (1984) Development of compact 500 kV 8000 A gas insulated transmission line study on insulation design. IEEE Trans Power Appar Syst 103(11):3153–3164CrossRefGoogle Scholar
  5. 5.
    Liu C-H, Palanisamy S, Chen S-M, Pei-Shan W, Yao L, Lou B-S (2015) Mechanism of formation of SF6 decomposition gas products and its identification by GC–MS and electrochemical methods: a mini review. Int J Electrochem Sci 10(2015):4223–4231Google Scholar
  6. 6.
    Tominaga S, Kuwahara H, Hirooka K, Yoshioka T (1981) SF6 gas analysis technique and its application for evaluation of internal conditions in SF6 gas equipment. IEEE Trans Power Appar Syst 100(9):4196–4206CrossRefGoogle Scholar
  7. 7.
    Tang J, Yang D, Zeng F et al (2016) Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis. Trans China Electrotech Soc 31:41–54Google Scholar
  8. 8.
    Peng Q (2012) Research of plasma chemical model and analysis of influencing factors of streamer discharge in air. Chongqing University, ChongqingGoogle Scholar
  9. 9.
    Davies AJ, Davies CS, Evans CJ (1971) Computer simulation of rapidly developing gaseous discharges. Proc Inst Electr Eng 118(6):816–823CrossRefGoogle Scholar
  10. 10.
    Passchier JDP, Goedheer WJ (1993) Relaxation phenomena after laser-induced photodetachment in electronegative RF discharges. J Appl Phys 73(3):1073–1079CrossRefGoogle Scholar
  11. 11.
    Lymberopoulos DP, Economou DJ (1993) Fluid simulations of glow discharges: effect of metastable atoms in argon. J Appl Phys 73(8):3668–3679CrossRefGoogle Scholar
  12. 12.
    Lymberopoulos DP, Economou DJ (1993) Fluid simulations of radio frequency glow discharges: two-dimensional argon discharge including metastables. Appl Phys Lett 63(18):2478–2480CrossRefGoogle Scholar
  13. 13.
    Nahorny J, Ferreira CM, Gordiets B et al (1995) Experimental and theoretical investigation of a N2–O2 DC flowing glow-discharge. J Phys D Appl Phys 28(4):738–747CrossRefGoogle Scholar
  14. 14.
    Pancheshnyi SV, Starikovskii AY (2003) Two-dimensional numerical modelling of the cathode-directed streamer development in a long gap at high voltage. J Phys D Appl Phys 36(21):2683CrossRefGoogle Scholar
  15. 15.
    Xing-Hua L, Wei H, Fan Y et al (2012) Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure. Chin Phys B 21(7):075201CrossRefGoogle Scholar
  16. 16.
    Antao DS, Staack DA, Fridman A et al (2009) Atmospheric pressure DC corona discharges: operating regimes and potential applications. Plasma Sources Sci Technol 18(3):035016CrossRefGoogle Scholar
  17. 17.
    Wu FF, Liao RJ, Yang LJ et al (2013) Numerical simulation of Trichel pulse characteristics in bar-plate DC negative corona discharge. Acta Phys Sin 11:142–143Google Scholar
  18. 18.
    Liao RJ, Wu FF, Liu XH et al (2012) Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air. Acta Phys Sin 61(24):245201Google Scholar
  19. 19.
    Liao R, Wu F, Yang L et al (2013) Investigation on microcosmic characteristics of trichel pulse in bar-plate DC negative corona discharge based on a novel simulation model. Int Rev Electr Eng 8(1):504–512Google Scholar
  20. 20.
    Chen X (2016) Study on microcosmic physical properties and propagation law of corona discharge in corona cage. Wuhan University, WuhanGoogle Scholar
  21. 21.
    Wiegart N, Niemeyer L, Pinnekamp F, Boeck W, Kindersberger J, Morrow R, Zaengl W, Zwicky M, Gallimberti I, Boggs SA (1988) Inhomogeneous field breakdown in GIS—the prediction of breakdown probabilities and voltages*. Part III: discharge development in sF6 and computer model of breakdown. IEEE Trans Power Deliv 3(3):939–946CrossRefGoogle Scholar
  22. 22.
    Seeger M, Niemeyer L, Bujotzek M (2008) Partial discharges and breakdown at protrusions in uniform background fields in SF6. J Phys D Appl Phys 41(18):185204CrossRefGoogle Scholar
  23. 23.
    Seeger M, Niemeyer L, Bujotzek M (2009) Leader ropagation in uniform background fields in SF6. J Phys D Appl Phys 42(18):185205CrossRefGoogle Scholar
  24. 24.
    Bujotzek M, Seeger M (2013) Parameter dependence of gaseous insulation in SF6. IEEE Trans Dielectr Electr Insul 20(3):845–855CrossRefGoogle Scholar
  25. 25.
    Pontiga F, Fernandez-Rueda A, Soria C, Castellanos A(2003) Physico-chemical modeling of corona discharge in SF6. In: Annual report conference on electrical insulation and dielectric phenomena, pp 444–447Google Scholar
  26. 26.
    Hirukawa M, Okabe S (2000)Effect of radial ion diffusion on simulation of positive corona discharge in SF6 gas. In: Proceedings of the 6th international conference on properties and applications of dielectric materials (Cat. No.00CH36347) vol 2, pp 621–624Google Scholar
  27. 27.
    Settaouti A (2013) Monte Carlo simulation of positive corona discharge in SF6. Int J Electr Power Energy Syst 49:349–353CrossRefGoogle Scholar
  28. 28.
    Settaouti A, Settaouti L (2010) Monte Carlo simulation of corona discharge in SF6. Electr Power Syst Res 80(9):1104–1110CrossRefGoogle Scholar
  29. 29.
    Morrow R (1987) Properties of streamers and streamer channels in SF6. Phys Rev A 35(4):1778–1785CrossRefGoogle Scholar
  30. 30.
    Pedersen A (1970) Criteria for spark breakdown in sulfur hexafluoride. IEEE Trans Power Appar Syst 89(8):2043–2048CrossRefGoogle Scholar
  31. 31.
    Dhali SK, Pal AK (1988) Numerical simulation of streamers in SF6. J Appl Phys 63(5):1355–1362CrossRefGoogle Scholar
  32. 32.
    Ilaş T A, Coteţ T, Ursan GA et al (2016) Fluid model used for simulating streamer breakdown in SF6 and SF6-N2 mixtures. In: International conference and exposition on electrical and power engineering. IEEE, WashingtonGoogle Scholar
  33. 33.
    Mao M, Wang Y, Bogaerts A (2011) Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/Ar plasmas used for deep silicon etching applications. J Phys D Appl Phys 44(43):435202CrossRefGoogle Scholar
  34. 34.
    Kokkoris G, Panagiotopoulos A, Goodyear A et al (2009) A global model for SF6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls. J Phys D Appl Phys 42(5):55209–55223CrossRefGoogle Scholar
  35. 35.
    Sherrill ME, Abdallah J Jr (2006) Spectroscopic characterization of an ultrashort-pulse-laser-driven Ar cluster target incorporating both Boltzmann and particle-in-cell models. Phys Rev E 73(2):95–104Google Scholar
  36. 36.
    Georghiou GE, Papadakis AP, Morrow R et al (2005) Numerical modeling of atmospheric pressure gas discharges leading to plasma production. J Phys D Appl Phys 38(20):R303CrossRefGoogle Scholar
  37. 37.
    Krishna R, Wesselingh JA (1997) The Maxwell–Stefan approach to mass transfer. Chem Eng Sci 52(6):861–911CrossRefGoogle Scholar
  38. 38.
    Wang Y, Levan MD (2008) Mixture diffusion in nanoporous adsorbents: equivalence of Fickian and Maxwell–Stefan approaches. J Phys Chem B 112(29):8600–8604CrossRefGoogle Scholar
  39. 39.
    Fu Y (2017) Investigation of SF6 decomposition mechanism under discharge and the evolution regulation of its characteristic decomposition products in high voltage switchgear. Xi’an Jiaotong University, Xi’anGoogle Scholar
  40. 40.
    Fortran program (2017) MAGBOLTZ, S.F. Biagi, versions 8.9 and after [EB/OL]. Accessed Feb 2014
  41. 41.
    Van Brunt RJ, Herron JT (2017) Plasma chemical model for decomposition of SF6 in a negative glow corona discharge. Phys Scripta 1994(T53):9Google Scholar
  42. 42.
    Phelps AV, Van Brunt RJ (1988) Electron-transport, ionization, attachment, and dissociation coefficients in SF6 and its mixtures. J Appl Phys 64(9):4269–4277CrossRefGoogle Scholar
  43. 43.
    Christophorou LG, Olthoff JK (2000) Electron interactions with SF6. J Phys Chem Ref Data 29(3):267–330CrossRefGoogle Scholar
  44. 44.
    Farouk T, Farouk B, Staack D et al (2006) Simulation of DC atmospheric pressure argon micro glow-discharge. Plasma Sources Sci Technol 15(4):676–688CrossRefGoogle Scholar
  45. 45.
    He W, Liu XH, Yang F et al (2012) Numerical simulation of direct current glow discharge in air with experimental validation. Jpn J Appl Phys 51(51):6001Google Scholar
  46. 46.
    Wang Q, Economou DJ, Donnelly VM (2006) Simulation of a direct current microplasma discharge in helium at atmospheric pressure. J Appl Phys 100(2):1260Google Scholar
  47. 47.
    Hagelaar GJ, de Hoog FJ, Kroesen GM (2000) Boundary conditions in fluid models of gas discharges. Phys Rev E Stat Phys Plasmas Fluids 62(1 Pt B):1452CrossRefGoogle Scholar
  48. 48.
    Wu F (2014) Numerical analysis on microscopic process of corona discharge and ionized field of HVDC transmission lines. Chongqing University, ChongqingGoogle Scholar
  49. 49.
    Boeuf JP, Pitchford LC (1995) Two-dimensional model of a capacitively coupled RF discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51(2):1376–1390Google Scholar
  50. 50.
    Hagelaar GJM (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14(4):722–733CrossRefGoogle Scholar
  51. 51.
    Tran TN, Golosnoy IO, Lewin PL et al (2011) Numerical modelling of negative discharges in air with experimental validation. J Phys D Appl Phys 44(1):015203/1–015203/15CrossRefGoogle Scholar
  52. 52.
    Sun HY, Lu BX, Wang M et al (2017) The role of photoionization in negative corona discharge: the influences of temperature, humidity, and air pressure on a corona. Phys Plasmas 24(10):103506CrossRefGoogle Scholar
  53. 53.
    Deng F (2014) Research on the characteristics and application of trichel pulses. Zhejiang University, ZhejiangGoogle Scholar
  54. 54.
    Sattari P (2011) FEM-FCT based dynamic simulation of trichel pulse corona discharge in point-plane configurationGoogle Scholar
  55. 55.
    Chu FY (1986) SF6 decomposition in gas-insulated equipment. IEEE Trans Electr Insul 1986(5):693–725CrossRefGoogle Scholar
  56. 56.
    Rejoub R, Sieglaff DR, Lindsay BG et al (2001) Absolute partial cross sections for electron-impact ionization of SF6 from threshold to 1000 eV. J Geophys Res Planets 101(E9):21151–21156Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical Engineering and AutomationWuhan UniversityWuhanChina

Personalised recommendations