Advertisement

Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 311–323 | Cite as

Deposition of Silver Nanostructures on Polymer Films by Glow Discharge

  • Anna Khlyustova
  • Nikolay SirotkinEmail author
  • Nataliya Kochkina
  • Anton Krayev
  • Valeriy Titov
  • Alexander Agafonov
Original Paper
  • 175 Downloads

Abstract

An atmospheric pressure glow discharge generated between the solid cathode and liquid anode was applied to produce silver nanoparticles and deposition of them onto a polymeric substrate. The formation of nanoparticles in liquid solution was confirmed by UV–Vis absorbance spectroscopy and dynamic light scattering method. The activation of polymer surfaces was detected using FTIR spectroscopy. The deposition of nanostructures onto polymeric substrates was confirmed by atomic force microscopy and scanning electron microscopy. It has been shown that forming a colloid system is a poor stability that results in deposition/sedimentation of nanoparticles. The distribution of nanostructures on the polymer surface is non-uniform. The possible mechanism of fixation of silver nanoparticles on the surface of polymer films suggested.

Keywords

Glow discharge Polymer films Ag nanostructure Deposition 

Notes

Acknowledgements

The IR spectra of polymer films were made with the FTIR spectrometer VERTEX 80v (Brucker Optics, Germany) at the center of joint use of scientific equipment (the Upper Volga Regional Center for Physical-Chemical Research, Russia). Authors would like to thank the Mr. A. Ovtsyn for conducting SEM analysis (Interdepartmental Laboratory of Structural Analysis Methods at the Ivanovo State University of Chemistry and Technology).

References

  1. 1.
    Bruggeman PJ, Kushne MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RC, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Petrovic ZLj, Pflieger R, Reuter S, Schram DC, Schröter S, Shiraiwa M, Tarabová B, Tsai PA, Verlet JRR, Woedtke T, Wilson KR, Yasui K, Zvereva GPJ (2016) Plasma-liquid interactions: a Review and roadmap. Plasma Sources Sci Technol 25:053002CrossRefGoogle Scholar
  2. 2.
    Marcus RK, Broekaert JAC (2003) Glow discharge plasmas in analytical spectroscopy. Wiley, ChichesterGoogle Scholar
  3. 3.
    Graham WG, Stadler KR (2011) Plasma in liquids and some of their applications in nanoscience. J Phys D Appl Phys 44:174037CrossRefGoogle Scholar
  4. 4.
    Kareem TA, Kaliani AA (2012) Glow discharge plasma electrolysis for nanoparticles synthesis. Ionics 18:315–327CrossRefGoogle Scholar
  5. 5.
    Wang R, Zuo S, Zhu W, Wu S, Nian W, Zhang J, Fang J (2014) Microplasma assisted growth of colloidal silver nanoparticles for enhanced antibacterial activity. Plasma Process Polym 11:44–51CrossRefGoogle Scholar
  6. 6.
    Shirai N, Uchida S, Tochikubo F (2014) Synthesis of metal nanoparticles by dual plasma electrolysis using atmospheric DC glow discharge in contact with liquid. Jpn J Appl Phys 53:046202CrossRefGoogle Scholar
  7. 7.
    Chen Q, Li J, Li Y (2015) A review of plasma-liquid interactions for nanometerials synthesis. J Phys D Appl Phys 48:424005CrossRefGoogle Scholar
  8. 8.
    Saito G, Akiyama T (2015) Nanomaterial synthesis using plasma generation in liquid. J Nanomater 215:123696Google Scholar
  9. 9.
    Dzimitrowicz A, Jamroz P, Nyk M, Pohl P (2016) Application of direct current atmospheric pressure glow microdischarge generated in contact with a flowing liquid Solution for synthesis of Au-Ag core-shell nanoparticles. Materials 9:268–279CrossRefGoogle Scholar
  10. 10.
    De Vos C, Baneton J, Witzke M, Dille J, Godet S, Gordon MJ, Sankaran RM, Reniers F (2017) A comparative study of the reduction of silver and gold salts in water by a cathodic microplasma electrode. J Phys D Appl Phys 50:105206CrossRefGoogle Scholar
  11. 11.
    Nikiforov AY, Deng X, Onyshchenko I, Vujosevic D, Vuksanovic V, Cvelbar U, De Geyter N, Morent R, Leys C (2016) Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. Eur Phys J Appl Phys 75:24710CrossRefGoogle Scholar
  12. 12.
    Ivanova TV, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, Cameron DC, Černák M (2017) Ambient air plasma pre-treatment of non-woven fabrics for deposition of antibacterial poly (l-lactide) nanoparticles. Plasma Process Polym 14:1600231CrossRefGoogle Scholar
  13. 13.
    Okada K (2007) Plasma-enhanced chemical vapor deposition of nanocristalline diamond. Sci Technol Adv Mater 8:624–634CrossRefGoogle Scholar
  14. 14.
    Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Ultraviolet-emitting ZnO nanowires synthesized by physical vapor deposition approach. Appl Phys Lett 78:407–409CrossRefGoogle Scholar
  15. 15.
    Alfonso E, Olaya J, Cubillos G (2012) The thin film growth through sputtering technique and its application. In: Andreeta M (ed) Crystallization—science and technology. InTech, Rijeka, pp 397–432Google Scholar
  16. 16.
    Alvarado JA, Maldonado A, Juarez H, Pacio M (2013) Synthesis of colloidal ZnO nanoparticles and deposit of thin films by spin coating technique. J Nanomaterials 2013:903191CrossRefGoogle Scholar
  17. 17.
    Venkatesan T (2014) Pulsed laser deposition—invention or discovery? J Phys D Appl Phys 47:034001CrossRefGoogle Scholar
  18. 18.
    Smetana AB, Wang JS, Boeckl JJ, Brown GJ, Wai CM (2008) Deposition of ordered arrays of gold and platinum nanoparticles with an adjustable particle size and interparticle spacing using supercritical CO2. J Phys Chem C 112:2294–2297CrossRefGoogle Scholar
  19. 19.
    Wang JS, Smetana AB, Boeckl JJ, Brown GJ, Wai CM (2010) Deposition of ordered arrays of metal sulfide nanoparticles in nanostructures using supercritical fluid carbon dioxide. Langmuir 26:1117–1123CrossRefGoogle Scholar
  20. 20.
    Ahmadi R, Ehsani N, Soltani AK (2013) Carbon coating on graphite substrates using centrifugal deposition processes: effect of centrifugal rotational speed and heat treatment on coating quality. Middle-East J Sci Res 15:287–290Google Scholar
  21. 21.
    Markelonis AR, Wang JS, Ulirich B, Wai CM, Brown GJ (2015) Nanoparticle film deposition using a simple and fast centrifuge sedimentation method. Appl Nanosci 5:457–468CrossRefGoogle Scholar
  22. 22.
    Choukourov A, Kylián O, Petr M, Vaidulych M, Nikitin D, Hanuš J, Artemenko A, Shelemin A, Gordeev I, Kolská Z, Solař P, Khalakhan I, Ryabov A, Májek J, Slavínská D, Biederman H (2017) RMS Roughness-independent tuning of surface wettability by tailoring silver nanoparticles with fluorocarbon plasma polymer. Nanoscale 9:2616–2625CrossRefGoogle Scholar
  23. 23.
    Yang X, Hao G, Ding X, Liang Y, Lin J (2017) Effect of power supply on the deposition of Zn on a steel substrate using cathodic plasma electrolysis. Surf Coat Technol 325:30–38CrossRefGoogle Scholar
  24. 24.
    Titov VA, Rybkin VV, Shikova TG, Ageeva TA, Golubchicov OA, Choi HS (2005) Study of the application possibilities of an atmospheric pressure glow discharge with liquid electrolyte cathode for the modification of polymer materials. Surf Coat Technol 199:231–236CrossRefGoogle Scholar
  25. 25.
    Titov VA, Rybkin VV, Shikova TG, Ageeva TA, Choi HS (2006) Modification of polyethylene, polypropylene and cotton using an atmospheric pressure glow discharge with liquid electrolyte cathode. High Temp Mater Process 10:467–478CrossRefGoogle Scholar
  26. 26.
    Joshi R, Schulze RD, Meyer-Plath A, Friedrich JF (2008) Selective surface modification of poly(propylene) with OH and COOH groups using liquid-plasma system. Plasma Process Polym 5:695–707CrossRefGoogle Scholar
  27. 27.
    Joshi R, Schulze RD, Meyer-Plath A, Friedrich JF (2009) Selective surface modification of polypropylene using underwater plasma technique or underwater capillary discharge. Plasma Process Polym 6:S218–S222CrossRefGoogle Scholar
  28. 28.
    Waters RF, Ohtsu A, Naya M, Hobson PA, Macdonald KF, Zheludev NI (2016) Templated assembly of metal nanoparticle films on polymer substrates. Appl Phys Letts 109:263105CrossRefGoogle Scholar
  29. 29.
    Reznickova A, Novotna Z, Kolska Z, Svorcik V (2014) Immobilization of silver nanoparticles on polyethylene terephthalate. Nanoscale Res Letts 9:305–311CrossRefGoogle Scholar
  30. 30.
    Shrader ME, Loeb GI (1993) Modern approaches to wettability. Theory and applications. Springer, New YorkGoogle Scholar
  31. 31.
    Owens DK, Wendt RC (1969) Estimation of the surface energy of polymers. J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  32. 32.
    Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42:053001CrossRefGoogle Scholar
  33. 33.
    Sirotkin NA, Titov VA (2018) Experimental study of heating of a liquid cathode and transfer of its components into the gas phase under the action of a DC discharge. Plasma Phys Rep 44:462–467CrossRefGoogle Scholar
  34. 34.
    Rumbach P, Bartels DM, Sankaran RM, Go DB (2015) The effect of air on solvated electron chemistry at a plasma/liquid interface. J Phys D Appl Phys 48:424001CrossRefGoogle Scholar
  35. 35.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759CrossRefGoogle Scholar
  36. 36.
    Billaud P, Huntzinger JR, Cottancin E, Lermé J, Pellarin M, Arnaud L, Broyer M, Del Fatti N, Vallée F (2007) Optical extinction spectroscopy of single silver nanoparticles. Eur Phys J D 43:271–274CrossRefGoogle Scholar
  37. 37.
    Noguez C (2007) Surface plasmons on metal nanoparticles: the Influence of shape and physical environment. J Phys Chem C 111:3806–3819CrossRefGoogle Scholar
  38. 38.
    Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44:283001CrossRefGoogle Scholar
  39. 39.
    Sholikhah UM, Pujiyanto A, Lestari E, Sarmini E, Widyaningrum T, Kadarisman K, Triyanto T, Puspitasari P (2016) Stability of silver nanoparticles as imaging materials. J Pure Appl Chem Res 5:173–177CrossRefGoogle Scholar
  40. 40.
    Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ (2015) Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol Sci Appl 8:67–80CrossRefGoogle Scholar
  41. 41.
    Pulit J, Banach M (2013) Preparation of nanocrystalline silver using gelatin and glucose as stabilizing and reducing agents, respectively. Digest J Nanomater Biostruct 8:787–795Google Scholar
  42. 42.
    Radić N, Obradović BM, Kostić M, Dojčinović B, Hudcová M, Kuraica MM, Černák M (2013) Deposition of gold nanoparticles on polypropylene nonwoven pretreated by dielectric barrier discharge and diffuse coplanar surface barrier discharge. Plasma Chem Plasma Process 33:201–218CrossRefGoogle Scholar
  43. 43.
    Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol A Chem 161:27–34CrossRefGoogle Scholar
  44. 44.
    Wang H, Adeleye AS, Huang Y, Li F, Keller AA (2015) Heteroaggregation of Nanoparticles with Biocolloids and Geocolloids. Adv Colloid Interfacial Sci 226:24–36CrossRefGoogle Scholar
  45. 45.
    Jiang H, Manolache S, Wong ACL, Denes FS (2004) Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J Appl Polym Sci 93:1411–1422CrossRefGoogle Scholar
  46. 46.
    Tochikubo F, Shimokawa Y, Shirai N, Uchida S (2014) Chemical reactions in liquid induced by atmospheric-pressure dc glow discharge in contact with liquid. Jpn J Appl Phys 53:126201CrossRefGoogle Scholar
  47. 47.
    Thagard SM, Takashima K, Mizuno A (2009) Chemistry of the positive and negative electrical discharges formed in liquid water and above a gas–liquid surface. Plasma Chem Plasma Process 29:455–473CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anna Khlyustova
    • 1
  • Nikolay Sirotkin
    • 1
    Email author
  • Nataliya Kochkina
    • 1
  • Anton Krayev
    • 1
  • Valeriy Titov
    • 1
  • Alexander Agafonov
    • 1
  1. 1.Laboratory of Chemistry of Hybrid Nanomaterials and Supermolecular SystemsG.A. Krestov Institute of Solution Chemistry of RASIvanovoRussia

Personalised recommendations