Advertisement

Hemoglobin as a Diagnosing Molecule for Biological Effects of Atmospheric-Pressure Plasma

  • Se Hoon Ki
  • Somin Sin
  • Jae-Ho Shin
  • Young Wan Kwon
  • Myoung Won Chae
  • Han Sup Uhm
  • Ku Youn Baik
  • Eun Ha Choi
Original Paper

Abstract

The studies with proteins are necessary to understand the biological effects of atmospheric pressure plasma (APP). Among proteins, those with transient metal ions play key roles in many biological events and they are very sensitive to environmental redox states. Iron-containing hemoglobin (Hb) is investigated in this study, after APP treatments under two environmental gas conditions of pure N2 and N2 + O2 mixture. Monitoring the intensity change for absorption spectra could lead to a quantitative assessment of the effect of discharge plasma on Hb. Redox states of Hb are classified into five states including O2-bound Hb (oxy-Hb), deoxy-Hb, met-Hb, NO-bound Hb (NO-Hb), and hemichrome. Chemically generated reactive species and some scavengers are applied to understand the chemical reactions. Our experimental results confirm the complex chemical reactions of APP and suggest the possible use of Hb as a model protein for the visualization of APP biological effects.

Keywords

Atmospheric pressure plasma Hemoglobin Reactive oxygen species (ROS) Reactive nitrogen species (RNS) ROS/RNS scavengers 

Notes

Acknowledgements

This research was supported by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (NRF-2016K1A4A3914113) and (NRF-2016R1A1A1A05005431). It was partly supported by the research grant of Kwangwoon University in 2016.

Compliance with Ethical Standards

Conflict of interest

The author declares they have no conflicting financial interests.

Supplementary material

11090_2018_9917_MOESM1_ESM.pdf (845 kb)
Supplementary material 1 (PDF 844 kb)

References

  1. 1.
    Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, Shimizu T (2011) Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol 60:75–83CrossRefGoogle Scholar
  2. 2.
    Leduc M, Guay D, Leask RL, Coulombe S (2009) Cell permeabilization using a non-thermal plasma. New J Phys 11:115021CrossRefGoogle Scholar
  3. 3.
    Lloyd G, Friedman G, Jafri S, Schultz G, Fridman A, Harding K (2010) Gas plasma: medical uses and developments in wound care. Plasma Processes Polym 7:194–211CrossRefGoogle Scholar
  4. 4.
    Panngom K, Baik KY, Nam MK, Han JH, Rhim H, Choi EH (2013) Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis 4:e642CrossRefGoogle Scholar
  5. 5.
    Kramer A, Lademann J, Bender C, Sckell A, Hartmann B, Münch S, Partecke I (2013) Suitability of tissue tolerable plasmas (TTP) for the management of chronic wounds. Clin Plasma Med 1:11–18CrossRefGoogle Scholar
  6. 6.
    Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J of Phys 11:115012CrossRefGoogle Scholar
  7. 7.
    Keidar M (2015) Plasma for cancer treatment. Plasma Sources Sci Technol 24:033001CrossRefGoogle Scholar
  8. 8.
    Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Pouvesle JM (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130:2185–2194CrossRefGoogle Scholar
  9. 9.
    Tian W, Kushner MJ (2014) Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J Phys D Appl Phys 47:165201CrossRefGoogle Scholar
  10. 10.
    Wende K, Williams P, Dalluge J, Van Gaens W, Aboubakr H, Bischof J, Masur K (2015) Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases 10:029518CrossRefGoogle Scholar
  11. 11.
    Takamatsu T, Uehara K, Sasaki Y, Miyahara H, Matsumura Y, Iwasawa A, Okino A (2014) Investigation of reactive species using various gas plasmas. RSC Adv 4:39901–39905CrossRefGoogle Scholar
  12. 12.
    Nastuta AV, Topala I, Pohoata V, Mihaila I, Agheorghiesei C, Dumitrascu N (2017) Atmospheric pressure plasma jets in inert gases: electrical, optical and mass spectrometry diagnosis. Rom Rep Phys 69:407Google Scholar
  13. 13.
    Takamatsu T, Kawate A, Oshita T, Miyahara H, Okino A, Fridman G (2013) Investigation of reactive species in various gas plasmas treated liquid and sterilization effects. Int Soc Plasma Chem 21:370Google Scholar
  14. 14.
    Burlica R, Kirkpatrick MJ, Locke BR (2006) Formation of reactive species in gliding arc discharges with liquid water. J Electrost 64:35–43CrossRefGoogle Scholar
  15. 15.
    Chen B, Zhu C, Fei J, Xiang H, Cheng Y, Yuan W, Longwei C (2016) Yield of ozone, nitrite nitrogen and hydrogen peroxide versus discharge parameter using APPJ under water. Plasma Sci Technol 18:278CrossRefGoogle Scholar
  16. 16.
    Lukes P, Dolezalova E, Sisrova I, Clupek M (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol 23:015019CrossRefGoogle Scholar
  17. 17.
    Baik KY, Kim YH, Ryu YH, Kwon HS, Park G, Uhm HS, Choi EH (2013) Feeding-gas effects of plasma jets on Escherichia coli in physiological solutions. Plasma Processes Polym 10:235–242CrossRefGoogle Scholar
  18. 18.
    Attri P, Sarinont T, Kim M, Amano T, Koga K, Cho AE, Shiratani M (2015) Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma. Sci Rep 5:17781CrossRefGoogle Scholar
  19. 19.
    Bekeschus S, Schmidt A, Weltmann KD, von Woedtke T (2016) The plasma jet kINPen: a powerful tool for wound healing. Clin Plasma Med 4:19–28CrossRefGoogle Scholar
  20. 20.
    Giulivi C, Davies KJ (1990) A novel antioxidant role for hemoglobin. The comproportionation of ferrylhemoglobin with oxyhemoglobin. J Biol Chem 265:19453–19460Google Scholar
  21. 21.
    Çimen MB (2008) Free radical metabolism in human erythrocytes. Clin Chim Acta 390:1–11CrossRefGoogle Scholar
  22. 22.
    Winterbourn CC (1985) Free-radical production and oxidative reactions of hemoglobin. Environ Health Perspect 64:321CrossRefGoogle Scholar
  23. 23.
    Reedy CJ, Gibney BR (2004) Heme protein assemblies. Chem Rev 104:617–650CrossRefGoogle Scholar
  24. 24.
    Mojtahedi M, Parastar H, Jalali-Heravi M, Chamani J, Chilaka FC, Moosavi-Movahedi AA (2008) Comparison between two different hemichromes of hemoglobins (HbA and HbS) induced by n-dodecyl trimethylammonium bromide: chemometric study. Colloids Surf B 63:183–191CrossRefGoogle Scholar
  25. 25.
    Asakura T, Minakata K, Adachi K, Russell MO, Schwartz E (1977) Denatured hemoglobin in sickle erythrocytes. J Clin Inv 59:633CrossRefGoogle Scholar
  26. 26.
    Boas DA, Franceschini MA (2011) Haemoglobin oxygen saturation as a biomarker: the problem and a solution. Philos Trans R Soc A 369:4407–4424CrossRefGoogle Scholar
  27. 27.
    Weingarten MS, Neidrauer M, Mateo A, Mao X, McDaniel JE, Jenkins L, Papazoglou ES (2010) Prediction of wound healing in human diabetic foot ulcers by diffuse near-infrared spectroscopy: a pilot study. Wound Rep Reg 18:180–185CrossRefGoogle Scholar
  28. 28.
    Kanazawa S, Turuki T, Nakaji T, Akamine S, Ichiki R (2013) Application of chemical dosimetry to hydroxyl radical measurement during underwater discharge. J Phys Conf Ser 418:012102CrossRefGoogle Scholar
  29. 29.
    Yan EB, Unthank JK, Castillo-Melendez M, Miller SL, Langford SJ, Walker DW (2005) Novel method for in vivo hydroxyl radical measurement by microdialysis in fetal sheep brain in utero. J Appl Physiol 98:2304–2310CrossRefGoogle Scholar
  30. 30.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci 87:1620CrossRefGoogle Scholar
  31. 31.
    Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557CrossRefGoogle Scholar
  32. 32.
    Valentine JS, Miksztal AR, Sawyer DT (1984) [7] Methods for the study of superoxide chemistry in nonaqueous solutions. Methods Enzymol 105:71CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Davies LR, Martin SM, Coddington WJ, Miller FJ, Buettner GR, Kerber RE (2003) The nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) increases free radical generation and degrades left ventricular function after myocardial ischemia–reperfusion. Resuscitation 59:345CrossRefGoogle Scholar
  34. 34.
    Winterbourn CC (1990) Oxidative reactions of hemoglobin. Methods Enzymol 186:265–272CrossRefGoogle Scholar
  35. 35.
    Ibrahim MA, El-Gohary MI, Saleh NA, Elashry MY (2008) Spectroscopic study on oxidative reactions of normal and pathogenic hemoglobin molecules. Rom J Biophys 18:39–47Google Scholar
  36. 36.
    Bremmer RH, Nadort A, Van Leeuwen TG, Van Gemert MJ, Aalders MC (2011) Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forens Sci Int 206:166–171CrossRefGoogle Scholar
  37. 37.
    Bremmer RH, De Bruin DM, De Joode M, Buma WJ, Van Leeuwen TG, Aalders MC (2011) Biphasic oxidation of oxy-hemoglobin in bloodstains. PLoS ONE 6:e21845CrossRefGoogle Scholar
  38. 38.
    Van Gaens W, Bogaerts A (2013) Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J Phys D Appl Phys 46:275201CrossRefGoogle Scholar
  39. 39.
    Kim HY, Lee HW, Kang SK, Wk Lee H, Kim GC, Lee JK (2012) Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution. Phys Plas 19:073518CrossRefGoogle Scholar
  40. 40.
    Itikawa Y, Hayashi M, Ichimura A (1986) Cross sections for collisions of electrons and photons with nitrogen molecules. J Phys Chem 15:985Google Scholar
  41. 41.
    Fons JT, Schappe RS, Lin CC (1996) Electron-impact excitation of the second positive band system (C 3 Pi u– > B 3 Pi g) and the C 3 Pi u electronic state of the nitrogen molecule. Phys Rev A 53:2239CrossRefGoogle Scholar
  42. 42.
    Huebner WF, Keady JJ, Lyon SP (1992) Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys Space Sci 195:1CrossRefGoogle Scholar
  43. 43.
    Mok YS, Kim JH, Nam IS, Ham SW (2000) Removal of NO and formation of byproducts in a positive-pulsed corona discharge reactor. Ind Eng Chem Res 39:3938–3944CrossRefGoogle Scholar
  44. 44.
    Kanazawa S, Chang JS, Round GF, Sheng G, Ohkubo T, Nomoto Y, Adachi T (1997) Removal of NOx from flue gas by corona discharge activated methane radical showers. J Electrost 40:651–656CrossRefGoogle Scholar
  45. 45.
    Jablonowski H, Bussiahn R, Hammer MU, Weltmann KD, von Woedtke T, Reuter S (2015) Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Phys Plasma 22:122008CrossRefGoogle Scholar
  46. 46.
    Du C, Liu Y, Huang Y, Li Z, Men R, Men Y, Tang J (2016) Qualitation and quantitation on microplasma jet for bacteria inactivation. Sci Rep 6:18838CrossRefGoogle Scholar
  47. 47.
    Uhm HS, Na YH, Choi EH, Cho G (2013) Dissociation and excitation coefficients of nitrogen molecules and nitrogen monoxide generation. Phys Plasma 20:083502CrossRefGoogle Scholar
  48. 48.
    Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. MRS Bull 30:899–901Google Scholar
  49. 49.
    Herron JT (1999) Evaluated chemical kinetics data for reactions of N (2D), N (2P), and N2(A3Σ u+) in the gas phase. J Phys Chem Ref Data 28:1453–1483CrossRefGoogle Scholar
  50. 50.
    Robertson P, Fridovich I (1982) A reaction of the superoxide radical with tetrapyrroles. Arch Biochem Biophys 213:353–357CrossRefGoogle Scholar
  51. 51.
    Nagababu E, Rifkind JM (2004) Heme degradation by reactive oxygen species. Antioxid Redox Signal 6:967–978CrossRefGoogle Scholar
  52. 52.
    Cano-Europa E, Blas-Valdivia V, Franco-Colin M, Ortiz-Butron R (2015) Regulation of the redox environment. In: Basic principles and clinical significance of oxidative stress. InTech.  https://doi.org/10.5772/61515
  53. 53.
    Takai E, Kitano K, Kuwabara J, Shiraki K (2012) Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Processes Polym 9:77–82CrossRefGoogle Scholar
  54. 54.
    Li HP, Wang LY, Li G, Jin LH, Le PS, Zhao HX, Bao CY (2011) Manipulation of lipase activity by the helium radio-frequency, atmospheric-pressure glow discharge plasma jet. Plasma Processes Polym 8:224–229CrossRefGoogle Scholar
  55. 55.
    Ke Z, Huang Q (2013) Inactivation and heme degradation of horseradish peroxidase induced by discharge plasma. Plasma Processes Polym 10:731–739CrossRefGoogle Scholar
  56. 56.
    Toh RJ, Peng WK, Han J, Pumera M (2014) Direct in vivo electrochemical detection of haemoglobin in red blood cells. Sci Rep 4:6209CrossRefGoogle Scholar
  57. 57.
    Baik KY, Huh YH, Kim YH, Kim J, Kim MS, Park HK, Park B (2017) The role of free radicals in hemolytic toxicity induced by atmospheric-pressure plasma jet. Oxid Med Cell Longev 2017:1289041CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Se Hoon Ki
    • 1
  • Somin Sin
    • 2
  • Jae-Ho Shin
    • 2
  • Young Wan Kwon
    • 3
  • Myoung Won Chae
    • 1
  • Han Sup Uhm
    • 1
  • Ku Youn Baik
    • 1
  • Eun Ha Choi
    • 1
  1. 1.Applied Plasma Medicine CenterKwangwoon UniversitySeoulRepublic of Korea
  2. 2.Department of ChemistryKwangwoon UniversitySeoulRepublic of Korea
  3. 3.KU-KIST Graduate SchoolKorea UniversitySeoulRepublic of Korea

Personalised recommendations