Advertisement

Synthesis of CdS Quantum Dots Using Direct Plasma Injection in Liquid Phase

  • 304 Accesses

  • 6 Citations

Abstract

In this work, we introduce a new method using non-equilibrium atmospheric pressure plasma jet (N-APPJ) for the synthesis of semiconductor quantum dots in liquid media with low power consumption at room temperature. In this method, the solution containing CdSO4, Na2S2O3 and thioglycolic acid (TGA) was treated by N-APPJ. Firstly, the key role of plasma applied voltage on the power consumption and the produced plasma reactive species was considered. We then continue to demonstrate that the optical properties such as absorption and photoluminescence of cadmium sulfide quantum dots (QDs) can carefully be controlled with the plasma parameters. Here, the effects of two major plasma parameters such as the plasma applied voltage and treatment time on the size of CdS QDs were investigated. The size of nanoparticles increases with the increase of the voltage and treatment time. It was also displayed that the change of the concentration of Na2S2O3 and TGA in the solution had no significant effect on the size of QDs in plasma method. Finally, X-ray diffraction, X-ray fluorescence spectrometry and transmission electron microscopy were employed to determine the composition, size and crystallinity of prepared CdS QDs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Kim M, Yang S, Boo J-H et al (2003) Surf Coat Technol 174:839–844

  2. 2.

    Cao Z, Walsh JL, Kong MG (2009) Appl Phys Lett 94:021501

  3. 3.

    Kment S, Kluson P, Zabova H et al (2009) Surf Coat Technol 204:667–675

  4. 4.

    Ito Y, Urabe K, Takano N et al (2008) Appl Phys Express 1:067009

  5. 5.

    Mashayekh S, Rajaee H, Akhlaghi M et al (2015) Phys Plasmas 22:093508

  6. 6.

    Fridman G, Friedman G, Gutsol A et al (2008) Plasma Process Polym 5:503–533

  7. 7.

    Fang J, Levchenko I, Ostrikov KK (2015) IEEE Trans Plasma Sci 43:765–769

  8. 8.

    Merche D, Vandencasteele N, Reniers F (2012) Thin Solid Films 520:4219–4236

  9. 9.

    Babayan S, Jeong J, Schütze A et al (2001) Plasma Sources Sci Technol 10:573

  10. 10.

    Ghosh S, Liu T, Bilici M et al (2015) J Phys D Appl Phys 48:314003

  11. 11.

    Ito Y, Sakai O, Tachibana K (2010) Thin Solid Films 518:3513–3516

  12. 12.

    Baba K, Kaneko T, Hatakeyama R (2009) Appl Phys Express 2:035006

  13. 13.

    Meiss SA, Rohnke M, Kienle L et al (2007) ChemPhysChem 8:50–53

  14. 14.

    Richmonds C, Sankaran RM (2008) Appl Phys Lett 93:131501

  15. 15.

    Huang X, Li Y, Zhong X et al (2015) Plasma Processes Polym 12:59–65

  16. 16.

    Yan T, Zhong X, Rider AE et al (2014) Chem Commun 50:3144–3147

  17. 17.

    Chen Q, Li J, Li Y (2015) J Phys D Appl Phys 48:424005

  18. 18.

    Mariotti D, Sankaran RM (2010) J Phys D Appl Phys 43:323001

  19. 19.

    Bruggeman P, Kushner MJ, Locke BR et al (2016) Plasma Sources Sci Technol 25:053002

  20. 20.

    Alivisatos AP (1996) Science 271:933

  21. 21.

    Gonçalves LFFF, Kanodarwala FK, Stride JA et al (2013) Opt Mater 36:186–190

  22. 22.

    Ramaiah KS, Pilkington R, Hill A et al (2001) Mater Chem Phys 68:22–30

  23. 23.

    Wang Y, Herron N (1991) J Phys Chem 95:525–532

  24. 24.

    Danaher W, Lyons L, Morris G (1985) Solar Energy Mater 12:137–148

  25. 25.

    Huang Y, Duan Y, Lieber CM (2005) Small 1:142–147

  26. 26.

    Molaei M, Hasheminejad H, Karimipour M (2015) Electron Mater Lett 11:7–12

  27. 27.

    Marandi M, Taghavinia N, Sedaghat Z et al (2008) Nanotechnology 19:225705

  28. 28.

    Molaei M, Iranizad ES, Marandi M et al (2011) Appl Surf Sci 257:9796–9801

  29. 29.

    Sostaric JZ, Caruso-Hobson RA, Mulvaney P et al (1997) J Chem Soc Faraday Trans 93:1791–1795

  30. 30.

    Wu Y, Wang L, Xiao M et al (2008) J Non-Cryst Solids 354:2993–3000

  31. 31.

    Yadav RS, Mishra P, Mishra R et al (2010) Ultrason Sonochem 17:116–122

  32. 32.

    Richmonds C, Witzke M, Bartling B et al (2011) J Am Chem Soc 133:17582–17585

  33. 33.

    Rumbach P, Bartels DM, Sankaran RM et al (2015) Nat Commun 6:7248

  34. 34.

    Goto F, Ichimura M, Arai E (1997) Jpn J Appl Phys 36:L1146

  35. 35.

    Hołub M (2012) Int J Appl Electromagn Mech 39:81–87

  36. 36.

    Murray C, Norris DJ, Bawendi MJ (1993) J Am Chem Soc 115:8706–8715

  37. 37.

    Yu WW, Qu L, Guo W et al (2003) Chem Mater 15:2854–2860

  38. 38.

    Walsh JL, Shi J, Kong MG (2006) Appl Phys Lett 88:171501

  39. 39.

    Jiang P-C, Wang W-C, Zhang S et al (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 122:107–112

  40. 40.

    Wu WY, Schulman J, Hsu T-Y et al (1987) Appl Phys Lett 51:710–712

  41. 41.

    Su H, Han J, Dong Q et al (2007) Nanotechnology 19:025601

  42. 42.

    Mishra SK, Srivastava RK, Prakash S et al (2011) Electron Mater Lett 7:31–38

  43. 43.

    Vigil O, Riech I, Garcia-Rocha M et al (1997) J Vac Sci Technol A 15:2282–2286

  44. 44.

    Klug HP, Alexander LE (1954) X-ray diffraction procedures. Wiley, New York

Download references

Author information

Correspondence to M. Shariat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

An aqueous solution surface of the CdS precursors was treated with the atmospheric pressure plasma jet for 20 min at 8 kv. It also exhibits that the CdS QDs which were initially incorporated in the solution were excited using plasma plume (WMV 1067 kb)

Supplementary Movie

An aqueous solution surface of the CdS precursors was treated with the atmospheric pressure plasma jet for 20 min at 8 kv. It also exhibits that the CdS QDs which were initially incorporated in the solution were excited using plasma plume (WMV 1067 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shariat, M., Karimipour, M. & Molaei, M. Synthesis of CdS Quantum Dots Using Direct Plasma Injection in Liquid Phase. Plasma Chem Plasma Process 37, 1133–1147 (2017). https://doi.org/10.1007/s11090-017-9819-5

Download citation

Keywords

  • Plasma–liquid interaction
  • Cadmium sulfide nanoparticles
  • Non-equilibrium atmospheric pressure plasma jet