Advertisement

Oxidation of Metals

, Volume 93, Issue 1–2, pp 215–227 | Cite as

Oxygen Diffusion Modeling in Titanium Alloys: New Elements on the Analysis of Microhardness Profiles

  • Nicolas VachéEmail author
  • Daniel Monceau
Original Paper

Abstract

This study focuses on the diffusion of oxygen in titanium alloys during high-temperature oxidation. In particular, the model used to obtain thermokinetic coefficients from microhardness profiles was investigated. A literature review shows that microhardness profiles are modeled by a simple error function in the same way as oxygen concentration profiles obtained by microprobe analysis (EPMA). The analysis of literature shows that the hypothesis of a linear relationship between microhardness and oxygen content is not true over the entire oxygen concentration range and that a parabolic relationship is empirically more accurate. A new modeling equation taking into account this parabolic law is proposed as well as a simplified and easier to use form. The relative error of the diffusion coefficients obtained using the simplified equation was then determined. This new model was applied to the experimental microhardness profile of a Ti-6242s sample oxidized at 625 °C. The resulting oxygen diffusion coefficient is in excellent agreement with the one determined from EPMA profile using the classic error function model. Finally, other data from literature were analyzed with the new model to obtain an Arrhenius diagram of oxygen diffusivity in Ti-64 alloy between 550 and 850 °C. This diagram gives thermokinetic coefficients \(D_{0} = 1.1 \times 10^{ - 5} { \exp }\left( {\frac{{ - 191\,{\text{kJ/mol}}}}{RT}} \right)\) that are close to those reported for pure α-Ti in the temperature range 550–850 °C.

Keywords

Titanium Oxidation Oxygen diffusion coefficient Microhardness profile Modeling 

Notes

Acknowledgements

The authors gratefully acknowledge the support of Airbus Operations SAS and the fruitful discussions with Benjamin Dod and Yannick Cadoret.

References

  1. 1.
    M. Yan, W. Xu, M. S. Dargusch, H. P. Tang, M. Brandt and M. Qian, Powder Metallurgy57, 251 (2014).CrossRefGoogle Scholar
  2. 2.
    C. E. Shamblen and T. K. Redden, in The Science, Technology and Application of Titanium, eds. R. I. Jaffe and N. E. Promisel (1970), p. 199.Google Scholar
  3. 3.
    K. S. Chan, M. Koike, B. W. Johnson and T. Okabe, Metallurgical and Materials Transactions A39, 171 (2008).CrossRefGoogle Scholar
  4. 4.
    H. Mehrer, H. Bakker, K.-H. Hellwege, H. Landolt, R. Börnstein and O. Madelung (eds.), Numerical Data and Functional Relationships in Science and Technology, (Springer, Berlin, 1990).Google Scholar
  5. 5.
    D. David, G. Beranger and E. A. Garcia, Journal of the Electrochemical Society130, 4 (1983).CrossRefGoogle Scholar
  6. 6.
    J. Unnam, R. N. Shenoy and R. K. Clark, Oxidation of Metals26, 231 (1986).CrossRefGoogle Scholar
  7. 7.
    Z. Liu and G. Welsch, Metallurgical Transactions A19, 1121 (1988).CrossRefGoogle Scholar
  8. 8.
    W. L. Finlay and J. A. Snyder, JOM2, 277 (1950).CrossRefGoogle Scholar
  9. 9.
    L. Bendersky and A. Rosen, Engineering Fracture Mechanics20, 303 (1984).CrossRefGoogle Scholar
  10. 10.
    R. Gaddam, M.-L. Antti and R. Pederson, Materials Science and Engineering: A599, 51 (2014).CrossRefGoogle Scholar
  11. 11.
    D. P. Satko, et al., Acta Materialia107, 377 (2016).CrossRefGoogle Scholar
  12. 12.
    R. H. Olsen, Metallography3, 183 (1970).CrossRefGoogle Scholar
  13. 13.
    R. Gaddam, B. Sefer, R. Pederson and M.-L. Antti, Materials Characterization99, 166–174 (2015).CrossRefGoogle Scholar
  14. 14.
    Z. Liu and G. Welsch, Metallurgical Transactions A19, 527 (1998).CrossRefGoogle Scholar
  15. 15.
    K. E. Wiedemann, R. N. Shenoy and J. Unnam, Metallurgical Transactions A18, 1503 (1987).CrossRefGoogle Scholar
  16. 16.
    B. Sefer, J. J. Roa, A. Mateo, R. Pederson, and M.-L. Antti, in Proceedings of the 13th World Conference on Titanium, eds. V. Venkatesh, A. L. Pilchak, J. E. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. L. Fraser, M. A. Imam, Y. Kosaka, H. J. Rack, A. Chatterjee, and A. Woodfield (Wiley, Hoboken, 2016), p. 1619.Google Scholar
  17. 17.
    C. Dupressoire, A. Rouaix-Vande Put, P. Emile, C. Archambeau-Mirguet, R. Peraldi and D. Monceau, Oxidation of Metals87, 343 (2017 ).CrossRefGoogle Scholar
  18. 18.
    A. Vande Put, C. Thouron, P. Emile, R. Peraldi, B. Dod, and D. Monceau, in Proceedings of the 14th World Conference on Titanium (2019).Google Scholar
  19. 19.
    J. Crank, The Mathematics of Diffusion, 2nd edn. (Clarendon Press, Oxford, 1975).Google Scholar
  20. 20.
    K. N. Strafford and J. M. Towell, Oxidation of Metals10, 41 (1976).CrossRefGoogle Scholar
  21. 21.
    C. J. Rosa, Metallurgical Transactions1, 2517 (1970).Google Scholar
  22. 22.
    M. Göbel, V. A. C. Haanappel and M. F. Stroosnijder, Oxidation of Metals55, 137 (2001).CrossRefGoogle Scholar
  23. 23.
    S. Zabler, Materials Characterization62, 1205 (2011).CrossRefGoogle Scholar
  24. 24.
    J. Baillieux, D. Poquillon and B. Malard, Journal of Applied Crystallography49, 175 (2016).CrossRefGoogle Scholar
  25. 25.
    H. Conrad, Progress in Materials Science26, 123 (1981).CrossRefGoogle Scholar
  26. 26.
    C. Leyens and M. Peters (eds.), Titanium and Titanium Alloys: Fundamentals and Applications, 1st edn. (Wiley, New York, 2003).Google Scholar
  27. 27.
    R. N. Shenoy, J. Unnam and R. K. Clark, Oxidation of Metals26, 105 (1986).CrossRefGoogle Scholar
  28. 28.
    J. Qu, P. J. Blau, J. Y. Howe and H. M. Meyer III, Scripta Materialia60, 886 (2009).CrossRefGoogle Scholar
  29. 29.
    K. Maeda, et al., Journal of Alloys and Compounds776, 519 (2019).CrossRefGoogle Scholar
  30. 30.
    H. Guleryuz and H. Cimenoglu, Journal of Alloys and Compounds472, 241 (2009).CrossRefGoogle Scholar
  31. 31.
    C. Ciszak, I. Popa, J.-M. Brossard, D. Monceau and S. Chevalier, Corrosion Science110, 91 (2016).CrossRefGoogle Scholar
  32. 32.
    H. Okamoto, Journal of Phase Equilibria and Diffusion32, 473 (2011).CrossRefGoogle Scholar
  33. 33.
    S. Winitzki, A Handy Approximation for the Error Function and Its Inverse, A Lecture Note Obtained Through Private Communication (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.CIRIMAT, CNRS, INP-ENSIACETUniversité de ToulouseToulouseFrance

Personalised recommendations