Magnetic Property Changes of CoNiCrAlY Coating Under Cyclic Oxidation and Hot Corrosion

  • Kh. RahmaniEmail author
Original Paper


In this paper, a non-destructive method for evaluation of a CoNiCrAlY coating applied to gas turbine blades has been studied. The specimens from cast Ni-base superalloy IN738LC were coated with Co–34Ni–18.6Cr–8.7Al–0.5Y by low pressure plasma spray (LPPS) technique. The XRD peaks indicated that CoNiCrAlY coatings are composed of β-NiAl and γ-Co (Ni, Cr) matrix with small amounts of Al2O3 and γ′-Ni3Al. The surfaces of the coated specimens were covered with thin salt mixture of Na2SO4 + l0 wt% NaCl. Afterward, the specimens were maintained at 850 °C for 24 h, cooled to room temperature (as one cycle) and then reintroduced in the furnace. The magnetic susceptibility of coating, as one of the magnetic properties, was periodically determined after each cycle. The results showed that the magnetic susceptibility of Co–34Ni–18.6Cr–8.7Al–0.5Y coating is related to the phase compositions and microstructures. The magnetic susceptibility typically increases with depletion of β-NiAl phase and decrease in the coating thickness during cyclic oxidation and hot corrosion. Therefore, measurement of magnetic susceptibility can be employed as a non-destructive test (NDT) method to estimate the thickness or residual lifetime of CoNiCrAlY coatings.


CoNiCrAlY coating Cyclic oxidation Hot corrosion Magnetic properties 









Parabolic rate constant (cm2/s−1 or mg2/cm4 s−1)


Magnetic susceptibility (dimensionless quantity)


Permeability (H m−1 or N A−2)


Relative permeability (ratio of the permeability of a specific medium (µ) to the permeability of free space (μ0)


Permeability constant (N A−2), µ0 = 4π × 10−7 H m−1 ≈ 1.2566370614…×10−6 H m−1


Electrical conductivity (S/m Siemens per meter)



The author would like to thank Mr. R. Mobarra and Mr. M. Ghaemimanesh for their assistance in experimental program.


  1. 1.
    Kh. Rahmani and S. Nategh, Metallurgical and Materials Transactions A41, 125 (2010).CrossRefGoogle Scholar
  2. 2.
    S. M. Marandi, Kh. Rahmani, and M. Tajdari, Aerospace Science and Technology33, 65 (2014).CrossRefGoogle Scholar
  3. 3.
    M. J. Donachie and S. J. Donachie, Superalloys. A Technical Guide, 2nd ed, (ASM International, Cleveland, 2002).Google Scholar
  4. 4.
    M. J. Pomeroy, Materials and Design26, 223 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Streiff, M. J. Phys. (France) I V, Colloque C.9, 3, 17 (1993).Google Scholar
  6. 6.
    K. V. Dahl, J. Hald, and A. Horsewell, Defect and Diffusion Forum258–260, 73 (2006).Google Scholar
  7. 7.
    S. M. Jiang, H. Q. Li, J. Ma, C. Z. Xu, J. Gong, and C. Sun, Corrosion Science52, 2316 (2010).CrossRefGoogle Scholar
  8. 8.
    P. Krukovsky, K. TadlyaI, A. Rybnikov, I. Kryukov, N. Mojaiskaia, V. Kolarik, and M. Juez-Lorenzo, Materials Research7, 43 (2004).CrossRefGoogle Scholar
  9. 9.
    K. S. Chan, N. S. Cheruvu, and G. R. Leverant, Journal of Engineering for Gas Turbines and Power121, 484 (1999).CrossRefGoogle Scholar
  10. 10.
    G. Dibelius, H. J. Krichel, and U. Reimann, VGB Kraftwerkstechnik70, 636 (1990).Google Scholar
  11. 11.
    N. Czech, F. Kirchner, and W. Stamm, in Conference Proceedings, TMS Annual Meeting, Anaheim California, 4–8 February 1996, p. 361Google Scholar
  12. 12.
    G. Antonelli, M. Ruzzier, and F. Necci, Journal of Engineering for Gas Turbines and Power, Transactions of ASME120, 537 (1998).CrossRefGoogle Scholar
  13. 13.
    J. Pitkänen, T. Hakkarainen, H. Jeskanen, P. Kuusinen, K. Lahdenperä, P. Särkiniemi, M. Kemppainen, and M. Pihkakoski, 15th World Conference on NDT, Roma, Italy (2000), Idn 629.Google Scholar
  14. 14.
    D. M. Johnson, D. P. Whittle, and J. Stringer, Corrosion Science15, 649 (1975).CrossRefGoogle Scholar
  15. 15.
    M. Kemppainen, J. Scheibel, and R. Viswanathan, OMMI1, 1 (2002).Google Scholar
  16. 16.
    B. Gudmundsson and B. E. Jacobson, Materials Science and Engineering100, 207 (1988).CrossRefGoogle Scholar
  17. 17.
    K. Zhang, M. M. Liu, S. L. Liu, C. Sun, and F. H. Wang, Corrosion Science53, 1990 (2011).CrossRefGoogle Scholar
  18. 18.
    Z. B. Bao, Q. M. Wang, W. Z. Li, X. Liu, J. Gong, T. Y. Xiong, and C. Sun, Corrosion Science51, 860 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Firouzi and K. Shirvani, Corrosion Science52, 3579 (2010).CrossRefGoogle Scholar
  20. 20.
    R. A. Rapp, Corrosion Science44, 209 (2002).CrossRefGoogle Scholar
  21. 21.
    M. Mohammadi, S. Javadpour, and S. A. J. Jahromi, Vacuum86, 1458 (2012).CrossRefGoogle Scholar
  22. 22.
    Y. Bourhis, C. St. John, Oxidation of Metals9, 507 (1975).CrossRefGoogle Scholar
  23. 23.
    G. R Nicholls, MRS Bulletin (2003), pp. 659–670.CrossRefGoogle Scholar
  24. 24.
    V. K. Tolpygo and D. R. Clarke, Acta Materialia48, 3283 (2000).CrossRefGoogle Scholar
  25. 25.
    J. Angenete, Stiller, and K. E Balkchinova, Surface and Coatings Technology176, 272 (2004).CrossRefGoogle Scholar
  26. 26.
    H. J. Grabke, Science Forum251–254, 149 (1997).CrossRefGoogle Scholar
  27. 27.
    R. Mobarra, A. H. Jafari, and M. Karaminezhad, Surface and Coatings Technology201, 2202 (2006).CrossRefGoogle Scholar
  28. 28.
    F. Branda, G. Lucian, M. Leoni, A. Costantini, B. Silvestri, and P. Scardi, Applide PhysicsA90, 695 (2008).Google Scholar
  29. 29.
    D. B. Miracle, Acta Metallurgica Materialia41, 649 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Energy and Mechanical Engineering DepartmentShahid Beheshti UniversityTehranIran

Personalised recommendations