Advertisement

Oxidation of Metals

, Volume 92, Issue 5–6, pp 439–455 | Cite as

The Effect of Air Fraction in Steam on the Embrittlement of Zry-4 Fuel Cladding Oxidized at 1273–1573 K

  • Martin NegyesiEmail author
  • Masaki Amaya
Original Paper
  • 36 Downloads

Abstract

This paper deals with the effect of air fraction in steam on the embrittlement of Zry-4 nuclear fuel cladding tubes exposed under steam–air atmospheres (air fractions of 10–100%) in the temperature range of 1273–1573 K. Ring compression tests were carried out in order to evaluate the embrittlement of fuel cladding. Furthermore, the microhardness of prior β-phase was measured and fractured surfaces were observed under scanning electron microscopy. The degree of the embrittlement is discussed against the results of metallographic and hydrogen analyses. The microstructure and the hydrogen pickup were substantially affected by nitride formation. Accelerated oxidation kinetics enhanced shrinking of the prior β-region. The enhanced hydrogen absorption resulted in the increased microhardness of prior β-phase. The degree of the fuel cladding embrittlement, expressed by the plastic strain at failure and the maximum load, correlated well with the microhardness and the thickness of prior β-phase.

Keywords

Zry-4 Steam Air Hydrogen Microhardness Embrittlement 

Notes

Acknowledgements

The authors would like to acknowledge the help contributed by other members of Fuel Safety Research Group of Nuclear Safety Research Center. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    M. Steinbrück, A. Miassoedov, G. Schanz, L. Sepold, U. Stegmaier and J. Stuckert, Nuclear Engineering and Design 236, 2006 (1709–1719).CrossRefGoogle Scholar
  2. 2.
    M. Steinbrück, Journal of Nuclear Materials 392, 2009 (531–544).CrossRefGoogle Scholar
  3. 3.
    C. Duriez, M. Steinbrück, D. Ohai, T. Meleg, J. Birchley and T. Haste, Nuclear Engineering and Design 239, 2009 (244–253).CrossRefGoogle Scholar
  4. 4.
    A. Sawada, M. Amaya, Oxidation behavior of Zircaloy cladding under nitrogen containing atmosphere, in WRFPM 2014, Sep 14–17, 2014, Sendai, Japan.Google Scholar
  5. 5.
    M. Negyesi, M. Amaya, Oxidation behavior of Zry-4 in steam-air mixtures at high temperature, in Top fuel 2016, September 11–16, 2016, Boise, USA.Google Scholar
  6. 6.
    M. Negyesi and M. Amaya, Journal of Nuclear Science and Technology 54, 2017 (1143–1155).CrossRefGoogle Scholar
  7. 7.
    M. Negyesi and M. Amaya, Annals of Nuclear Energy 114, 2018 (52–65).CrossRefGoogle Scholar
  8. 8.
    M. Negyesi and M. Amaya, Journal of Nuclear Materials 524, 2019 (263–277).CrossRefGoogle Scholar
  9. 9.
    M. Grosse, S. Pulvermacher, M. Steinbrück and B. Schillinger, Physica B 551, 2018 (244–248).CrossRefGoogle Scholar
  10. 10.
    C. Duriez, O. Coindreau, M. Gestin, et al., Journal of Nuclear Materials 513, 2019 (152–174).CrossRefGoogle Scholar
  11. 11.
    M. Grosse, M. Steinbrueck, L. Ott, A. Kaestner, Hydrogen uptake of Zircaloy-4 during reaction in nitrogen/steam atmosphere in the temperature range of 600–1100 °C, in Proceedings of the ICAPP 2015, May 3–6, 2015, Nice, France.Google Scholar
  12. 12.
    H. M. Chung, Nuclear Engineering and Technology 37, 2005 (327–362).Google Scholar
  13. 13.
    M. Billone, Y. Yan, T. Burtseva, R. Daum, Cladding embrittlement during postulated loss-of-coolant accidents, U.S. NRC, NUREG/CR-6967, 2008.Google Scholar
  14. 14.
    C. Grandjean, G. Hache, A state-of-the-art review of past programs devoted to fuel behavior under loss-of-coolant accident. Part 3. Cladding oxidation. Resistance to quench and post-quench loads, IRSN, DPAM/SEMCA 2008-93, 2008.Google Scholar
  15. 15.
    F. Nagase, T. Chuto and T. Fuketa, Journal of Nuclear Science and Technology 48, 2011 (1369–1376).CrossRefGoogle Scholar
  16. 16.
    E. Zuzek and J. P. Abriata, Bulletin of Alloy Phase Diagrams 11, 1990 (385–395).CrossRefGoogle Scholar
  17. 17.
    M. Steinbrück, Journal of Nuclear Materials 334, 2004 (58–64).CrossRefGoogle Scholar
  18. 18.
    K. Park and R. D. Olander, Journal of the American Ceramic Society 74, 1991 (72–77).CrossRefGoogle Scholar
  19. 19.
    M. Miyake, M. Uno and S. Yamanaka, Journal of Nuclear Materials 270, 1999 (233–241).CrossRefGoogle Scholar
  20. 20.
    J. Brachet, V. Vandenberghe-Maillot, L. Portier, et al., Journal of ASTM International 5, (5), 2008 (1–28).CrossRefGoogle Scholar
  21. 21.
    A. Stern, J. Brachet, V. Maillot, et al., Journal of ASTM International 5, (4), 2008 (1–20).CrossRefGoogle Scholar
  22. 22.
    M. Negyesi, V. Kloucek, J. Lorincik, et al., Nuclear Engineering and Design 261, 2013 (260–268).CrossRefGoogle Scholar
  23. 23.
    R. E. Pawel, Journal of Nuclear Materials 50, 1974 (247–258).CrossRefGoogle Scholar
  24. 24.
    A. Sawatzky, Proposed Criterion for the Oxygen Embrittlement of Zircaloy-4 Fuel Cladding, in Proceedings of 4th Symposium On Zirconium in the Nuclear Industry, June 27–29, Stratford-on-Avon, UK, 1978.Google Scholar
  25. 25.
    H. M. Chung, T. F. Kassner, Embrittlement Criteria for Zircaloy Fuel Cladding Applicable to Accident Situations in Light-Water Reactors, NUREG/CR-1344, ANL-79-48, Argonne National Laboratory, 1980.Google Scholar
  26. 26.
    J. Desquines, D. Drouan, S. Guilbert and P. Lacote, Journal of Nuclear Materials 469, 2016 (20–31).CrossRefGoogle Scholar
  27. 27.
    L. Portier, T. Bredel, J. Brachet, V. Maillot, J. Mardon and A. Lesbros, Journal of ASTM International 2, (2), 2005 (103–126).CrossRefGoogle Scholar
  28. 28.
    M. Kuroda, D. Setoyama, M. Uno and S. Yamanaka, Journal of Alloys and Compounds 368, 2004 (211–214).CrossRefGoogle Scholar
  29. 29.
    H. Uetsuka, T. Furuta and S. Kawasaki, Journal of Nuclear Science and Technology 18, (9), 1981 (705–717).CrossRefGoogle Scholar
  30. 30.
    A. Anttila, J. Raeisaenen and J. Keinonen, Journal of the Less Common Metals 96, 1984 (257–262).CrossRefGoogle Scholar
  31. 31.
    X. Ma, C. Toffolon-Masclet, T. Guilbert, D. Hamon and J. C. Brachet, Journal of Nuclear Materials 377, 2008 (359–369).CrossRefGoogle Scholar
  32. 32.
    J. J. Kearns, Journal of Nuclear Materials 43, 1972 (330–338).CrossRefGoogle Scholar
  33. 33.
    V. Busser, M.-C. Baietto-Dubourg, J. Desquines, C. Duriez and J.-P. Mardon, Journal of Nuclear Materials 384, 2009 (87–95).CrossRefGoogle Scholar
  34. 34.
    J. Herb, J. Sievers and H.-G. Sonnenburg, Nuclear Engineering and Design 273, 2014 (615–630).CrossRefGoogle Scholar
  35. 35.
    M. Steinbrück and S. Schaffer, Oxidation of Metals 85, 2015 (245–262).CrossRefGoogle Scholar
  36. 36.
    M. Grosse, M. Steinbrueck, Y. Maeng, J. Sung, Influence of the steam and oxygen flow rate on the reaction of zirconium in steam/nitrogen and oxygen/nitrogen atmospheres, in ICAPP 2016, April 17–20, San Francisco, USA, 2016.Google Scholar
  37. 37.
    M. Steinbrück, F. O. da Silva and M. Grosse, Journal of Nuclear Materials 490, 2017 (226–237).CrossRefGoogle Scholar
  38. 38.
    J. P. Abriata, J. Garces and R. Versaci, Bulletin of Alloy Phase Diagrams 7, 1986 (116–124).CrossRefGoogle Scholar
  39. 39.
    M. Steinbrück, Journal of Nuclear Materials 447, (1–3), 2014 (46–55).  https://doi.org/10.1016/j.jnucmat.2013.12.024.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nuclear Safety Research CenterJapan Atomic Energy AgencyIbarakiJapan

Personalised recommendations