Advertisement

Influence of W Content on the Oxidation Behaviour of Ternary \(\gamma ^{\prime }\)-Strengthened Co-Based Model Alloys Between 800 and \(900\,^{\circ }{\hbox {C}}\)

  • Martin Weiser
  • Sannakaisa VirtanenEmail author
Original Paper
  • 21 Downloads

Abstract

The oxidation behaviour of ternary Co–Al–W alloys with W contents between 7 and 10 at.\(\%\) was investigated in detail. Continuous thermogravimetry was conducted between 800 and \(900\,^{\circ }{\hbox {C}}\) to compare the impact of \(\gamma ^{\prime }\) volume fraction on the overall mass gain during the comparably long transient stages of oxide-scale growth. Resulting cross-sections were assessed using electron microscope-based analysis methods. To understand prevailing oxidation mechanisms, the development and composition of multilayered oxide scales were the main focus of the present study. Elemental distribution of three individual scale sections was investigated with electron probe microanalysis. No striking impact of the W level in the alloy was found. However, the development of diffusion-limiting barrier layers was demonstrated to change with varying W contents. Continuous alumina layers were only observed after 100-h exposure at \(800\,^{\circ }{\hbox {C}}\). For samples with 9 at.\(\%\) W, the grain structure within the outer Co-oxide layer was characterized with electron backscattered diffraction after the maximum duration of exposure. Individual growth kinetics for three distinguished layers within the oxide scales were used to compare elemental transport depending on the W content in the alloy and the exposure temperature.

Keywords

Oxidation kinetics Two-phase microstructure Co-based alloys Barrier layer W content 

Notes

Acknowledgements

Scientific and financial support by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Centre SFB-TR 103 (Project A5) is acknowledged. Further valuable input was delivered by Mathias Galetz (discussions) and Gerald Schmidt (EPMA measurements) from the DECHEMA research institute.

Supplementary material

11085_2019_9934_MOESM1_ESM.pdf (19.7 mb)
Supplementary material 1 (pdf 20191 KB)

References

  1. 1.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida, Science 312, (5770), 2006 (90).  https://doi.org/10.1126/science.1121738.CrossRefGoogle Scholar
  2. 2.
    L. Klein, Y. Shen, M. S. Killian and S. Virtanen, Corrosion Science 53, (9), 2011 (2713).  https://doi.org/10.1016/j.corsci.2011.04.020.CrossRefGoogle Scholar
  3. 3.
    H. Y. Yan, V. A. Vorontsov and D. Dye, Corrosion Science 83, 2014 (382).  https://doi.org/10.1016/j.corsci.2014.03.002.CrossRefGoogle Scholar
  4. 4.
    A. Bauer, S. Neumeier, F. Pyczak and M. Göken, Scripta Materialia 63, (12), 2010 (1197).  https://doi.org/10.1016/j.scriptamat.2010.08.036.CrossRefGoogle Scholar
  5. 5.
    I. Povstugar, C. H. Zenk, R. Li, P. P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken and D. Raabe, Materials Science and Technology 32, (3), 2016 (220).  https://doi.org/10.1179/1743284715Y.0000000112.CrossRefGoogle Scholar
  6. 6.
    K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida, Materials Transactions 49, (6), 2008 (1474).  https://doi.org/10.2320/matertrans.MER2008073.CrossRefGoogle Scholar
  7. 7.
    C. H. Zenk, S. Neumeier, N. M. Engl, S. G. Fries, O. Dolotko, M. Weiser, S. Virtanen and M. Göken, Scripta Materialia 112, 2016 (83).  https://doi.org/10.1016/j.scriptamat.2015.09.018.CrossRefGoogle Scholar
  8. 8.
    A. C. Yeh, S. C. Wang, C. F. Cheng, Y. J. Chang and S. C. Chang, Oxidation of Metals 86, (1–2), 2016 (99).  https://doi.org/10.1007/s11085-016-9623-2.CrossRefGoogle Scholar
  9. 9.
    F. B. Ismail, V. A. Vorontsov, T. Lindley, M. C. Hardy, D. Dye and B. A. Shollock, Corrosion Science 116, 2017 (44).  https://doi.org/10.1016/j.corsci.2016.12.009.CrossRefGoogle Scholar
  10. 10.
    R. J. Chater, M. Weiser and S. Virtanen, Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics 36, 2018 (3).  https://doi.org/10.1116/1.5012274.CrossRefGoogle Scholar
  11. 11.
    C. A. Stewart, A. Suzuki, T. M. Pollock and C. G. Levi, Oxidation of Metals 90, (3–4), 2018 (485).  https://doi.org/10.1007/s11085-018-9849-2.CrossRefGoogle Scholar
  12. 12.
    M. Weiser, M. C. Galetz, H. E. Zschau, C. H. Zenk, S. Neumeier, M. Göken and S. Virtanen, Corrosion Science 156, 2019 (84).  https://doi.org/10.1016/j.corsci.2019.05.007.CrossRefGoogle Scholar
  13. 13.
    T. M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu and A. Suzuki, JOM 62, (1), 2010 (58).  https://doi.org/10.1007/s11837-010-0013-y.CrossRefGoogle Scholar
  14. 14.
    L. Klein, A. Bauer, S. Neumeier, M. Göken and S. Virtanen, Corrosion Science 53, (5), 2011 (2027).  https://doi.org/10.1016/j.corsci.2011.02.033.CrossRefGoogle Scholar
  15. 15.
    L. Klein, M. S. Killian and S. Virtanen, Corrosion Science 69, 2013 (43).  https://doi.org/10.1016/j.corsci.2012.09.046.CrossRefGoogle Scholar
  16. 16.
    L. Klein, A. Zendegani, M. Palumbo, S. G. Fries and S. Virtanen, Corrosion Science 89, (C), 2014 (1).  https://doi.org/10.1016/j.corsci.2014.08.016.CrossRefGoogle Scholar
  17. 17.
    M. Weiser, Y. M. Eggeler, E. Spiecker and S. Virtanen, Corrosion Science 135, 2018 (78).  https://doi.org/10.1016/j.corsci.2018.02.020.CrossRefGoogle Scholar
  18. 18.
    M. Weiser, R.J. Chater, B.A. Shollock, S. Virtanen, Materials Degradation (2019). (to be published)Google Scholar
  19. 19.
    A. Suzuki and T. M. Pollock, Acta Materialia 56, (6), 2008 (1288).  https://doi.org/10.1016/j.actamat.2007.11.014.CrossRefGoogle Scholar
  20. 20.
    M. Ooshima, K. Tanaka, N. L. Okamoto, K. Kishida and H. Inui, Journal of Alloys and Compounds 508, (1), 2010 (71).  https://doi.org/10.1016/j.jallcom.2010.08.050.CrossRefGoogle Scholar
  21. 21.
    F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Paul, N. Schell, A. Schreyer, A. Stark and F. Symanzik, Journal of Alloys and Compounds 632, 2015 (110).  https://doi.org/10.1016/j.jallcom.2015.01.031.CrossRefGoogle Scholar
  22. 22.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, (Academic Press, Cambridge, 1953).Google Scholar
  23. 23.
    C.A. Stewart, R.K. Rhein, A. Suzuki, T.M. Pollock, C.G. Levi, Proceedings of the 13th International Symposium on Superalloys 2016 pp. 991–999 (2016).  https://doi.org/10.1002/9781119075646.ch105
  24. 24.
    D. Caplan, M. J. Graham and M. Cohen, Journal of the Electrochemical Society 119, (9), 1972 (1205).  https://doi.org/10.1149/1.2404444.CrossRefGoogle Scholar
  25. 25.
    S. Mrowec, Corrosion Science 7, (9), 1967 (563).  https://doi.org/10.1016/0010-938X(67)80033-7.CrossRefGoogle Scholar
  26. 26.
    H. V. Atkinson, Oxidation of Metals 24, (3–4), 1985 (177).  https://doi.org/10.1007/BF00664231.CrossRefGoogle Scholar
  27. 27.
    A. Atkinson, Reviews of Modern Physics 57, (2), 1985 (437).  https://doi.org/10.1103/RevModPhys.57.437.CrossRefGoogle Scholar
  28. 28.
    G. B. Gibbs and R. Hales, Corrosion Science 17, (6), 1977 (487).  https://doi.org/10.1016/0010-938X(77)90004-X.CrossRefGoogle Scholar
  29. 29.
    B. Pieraggi, Oxidation of Metals 27, (3–4), 1987 (177).  https://doi.org/10.1007/BF00667057.CrossRefGoogle Scholar
  30. 30.
    H. M. Hindam, W. W. Smeltzer and H. M. Hindam, Journal of the Electrochemical Society 127, (7), 1980 (1622).  https://doi.org/10.1149/1.2129964.CrossRefGoogle Scholar
  31. 31.
    A. Karaali, K. Mirouh, S. Hamamda and P. Guiraldenq, Computational Materials Science 33, (1–3), 2005 (37).  https://doi.org/10.1016/j.commatsci.2004.12.025.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Surface Science and CorrosionFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations