Advertisement

High-Temperature Oxidation of Double-Glow Plasma Tantalum Alloying on γ-TiAl

  • Dongbo WeiEmail author
  • Pingze ZhangEmail author
  • Yuqin Yan
  • Xiaohu Chen
  • Fengkun Li
  • Shiyuan Wang
  • Zhengjun Yao
Original Paper
  • 4 Downloads

Abstract

A Ta-modified layer was prepared on γ-TiAl by double-glow plasma surface metallurgy technique. Based on the results of high-temperature oxidation tests at 700, 800, and 900 °C, we studied the morphology, depth profile, and phase of γ-TiAl and Ta-modified layer by scanning electron microscopy, energy spectrum analysis, and X-ray diffraction analysis. Results showed that the Ta-modified layer was tightly bonded to the substrate without voids and cracks, consisting of the α-Ta outer layer and inner diffusion layer. It was found that the isothermal oxidation kinetic curves of the TiAl with the Ta-modified layer followed the parabolic rate law. Ta element promoted the diffusion of Al and formation of uniformly mixed Al2O3/Ta2O5 films, which prevented the inward diffusion of oxygen and help to the improved high-temperature oxidation resistance.

Keywords

γ-TiAl Double-glow plasma surface metallurgy technique Ta-modified layer High-temperature oxidation resistance 

Notes

Acknowledgements

This project was supported by Natural Science Foundation for Excellent Young Scientists of Jiangsu Province, China (Grant No. BK20180068), China Postdoctoral Science Foundation funded project (Grant No. 2018M630555), the Fundamental Research Funds for the Central Universities, China (Grant No. NS2018039), Opening Project of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology (Grant No. NJ2018009), Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (Grant No. ASMA201701).

References

  1. 1.
    L. Patriarca, M. Filippini, and S. Beretta, Intermetallics 75, 42 (2016).CrossRefGoogle Scholar
  2. 2.
    R. L. Lara and P. A. Sundaram, Materials Chemistry and Physics 181, 67 (2016).CrossRefGoogle Scholar
  3. 3.
    B. Jabbaripour, M. H. Sadeghi, M. R. Shabgard, and H. Faraji, Journal of Manufacturing Processes 15, 56 (2013).CrossRefGoogle Scholar
  4. 4.
    M. Roth and H. Biermann, International Journal of Fatigue 30, 352 (2008).CrossRefGoogle Scholar
  5. 5.
    M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, JOM 48, 46 (1996).CrossRefGoogle Scholar
  6. 6.
    F. Dettenwanger, E. Schumann, M. Ruhle, J. Rakowski, and G. H. Meier, Oxidation of Metals 50, 269 (1998).CrossRefGoogle Scholar
  7. 7.
    Z. Tang, F. Wang, and W. Wu, Materials Science and Engineering: A 276, 70 (2000).CrossRefGoogle Scholar
  8. 8.
    Y. C. Liu, P. Z. Zhang, D. B. Wei, X. F. Wei, X. H. Chen, and F. Ding, Surface and Interface Analysis 49, 674 (2017).CrossRefGoogle Scholar
  9. 9.
    M. J. Bermingham, J. Thomson-Larkins, D. H. S. John, and M. S. Dargusch, Journal of Materials Processing Technology 258, 29 (2018).CrossRefGoogle Scholar
  10. 10.
    X. X. Luo, Z. J. Yao, P. Z. Zhang, Q. Miao, W. P. Liang, D. B. Wei, and Y. Chen, Applied Surface Science 30, 259 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Ramachandran and R. G. Reddy, High Temperature Materials and Processes 27, 235-242.CrossRefGoogle Scholar
  12. 12.
    D. B. Wei, P. Z. Zhang, Z. J. Yao, W. P. Liang, Q. Miao, and Z. Xu, Corrosion Science 66, 43 (2013).CrossRefGoogle Scholar
  13. 13.
    M. P. Brady, E. D. Verink, and J. W. Smith, Oxidation of Metals 51, 539 (1999).CrossRefGoogle Scholar
  14. 14.
    J. L. Xu, F. Liu, F. P. Wang, D. Z. Yu, and L. C. Zhao, Journal of Alloys and Compounds 472, 276 (2009).CrossRefGoogle Scholar
  15. 15.
    Z. K. Qiu, P. Z. Zhang, D. B. Wei, X. F. Wei, and X. H. Chen, Surface and Coatings Technology 278, 92 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. M. Zhu, P. Z. Zhang, X. F. Wei, D. B. Wei, X. H. Chen, and P. Zhou, Materials and Corrosion 66, 1480 (2015).CrossRefGoogle Scholar
  17. 17.
    Z. H. Xie and S. Shan, Journal of Materials Science 53, 3744 (2018).CrossRefGoogle Scholar
  18. 18.
    C. O. A Olsson and D. Landolt, Corrosion Science 46, 213 (2004).CrossRefGoogle Scholar
  19. 19.
    Y. Luo, W. Zeng, Z. Xi, Rare Metal Materials & Engineering, 44, 282 (2015).CrossRefGoogle Scholar
  20. 20.
    A. M. Hofer, G. Mori, A. Fian, J. Winkler, and C. Mitterer, Thin Solid Films 599, 1 (2016).CrossRefGoogle Scholar
  21. 21.
    D. Y. Zhang, Q. Y. Fei, and H. M. Zhao, Thin Solid Films 484, 215 (2005).CrossRefGoogle Scholar
  22. 22.
    R. J. Hanrahan and D. P. Butt, Oxidation of Metals 47, 317 (1997).CrossRefGoogle Scholar
  23. 23.
    J. Song, P. Z. Zhang, D. B. Wei, X. F. Wei, and Y. Wang, Materials Characterization 98, 54 (2004).CrossRefGoogle Scholar
  24. 24.
    D. B. Wei, P. Z. Zhang, Z. J. Yao, X. F. Wei, J. T. Zhou, and X. H. Chen, Applied Surface Science 388, 571 (2016).CrossRefGoogle Scholar
  25. 25.
    R. G. Reddy, X. Wen, and M. Divakar, Metallurgical and Materials Transactions A 32, 2357 (2001).CrossRefGoogle Scholar
  26. 26.
    R. J. Hanrahan and D. P. Butt, Oxidation of Metals 47, 317 (1997).CrossRefGoogle Scholar
  27. 27.
    Z. Ning, L. Junpin, W. Yanli, et al., Journal of Aeronautical Materials 26, 42 (2006).Google Scholar
  28. 28.
    D.-B. Wei, P.-Z. Zhang, Z.-J. Yao, et al., Corrosion Science, 66, 43 (2013).Google Scholar
  29. 29.
    S. Zhu, Q. Wang, and L. Jianrong, Chinese Journal of Nonferrous Metals (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information TechnologyNanjingChina
  3. 3.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjingChina

Personalised recommendations