Oxidation Behaviour of Steel During hot Rolling by Using TiO2-Containing Water-Based Nanolubricant

  • Hui Wu
  • Chengyang Jiang
  • Jianqiang ZhangEmail author
  • Shuiquan Huang
  • Lianzhou Wang
  • Sihai Jiao
  • Han HuangEmail author
  • Zhengyi JiangEmail author
Original Paper


The formation and performance of oxide scale on a low-alloy steel were investigated during hot rolling at 850 and 950 °C under various lubrication conditions, including benchmarks (dry condition and water) and water-based nanolubricants containing various concentrations of nano-TiO2 from 1.0 to 8.0 wt%. The results showed that the addition of nano-TiO2 particles in the lubricant significantly reduced the thickness of oxide scale and surface oxide roughness. The reduction reached the maximum when the concentration of TiO2 was 4.0 wt%. Detailed oxide phase characterisation and oxide component fraction determination revealed that hot rolling destroyed the conventional multi-layer oxide scale and promoted magnetite and haematite formation because of easy access of oxygen from the deformed structure. The effect of TiO2 was explained by the decrease in the rolling force, which led to a higher fraction of dense retaining wustite and therefore reduced the extent of further oxidation. Increasing temperature did not change the trend of lubrication effect but raised the rate of steel oxidation in general.


Nano-TiO2 Water-based nanolubricant Steel oxidation Hot rolling 



The authors acknowledge the financial supports from Baosteel-Australia Joint Research and Development Center (BAJC) under the Project of BA17004 and Australian Research Council (ARC) under Linkage Project Program (LP150100591). The authors are grateful to Mr. Suoquan Zhang at Baosteel Research Institute for the provision of steel samples. We would like to thank the technicians in the workshop of SMART Infrastructure Facility at University of Wollongong for their kind help on samples machining. We also wish to extend special thanks to A/Prof. Buyung Kosasih and Mr. Long Wang for their great supports on the ultrasonic treatment of applied lubricants. Thanks also go to Drs. Lin Wang and Chun Yu who participated in some oxide analyses when they were working at UNSW.


  1. 1.
    L. Suárez, Y. Houbaert, X. V. Eynde, and R. Colás, Corrosion Science 51, 309 (2009).CrossRefGoogle Scholar
  2. 2.
    X. Cheng, Z. Jiang, D. Wei, L. Hao, J. Zhao, and L. Jiang, Tribology International 84, 61 (2015).CrossRefGoogle Scholar
  3. 3.
    T. Jia, Z. Y. Liu, H. F. Hu, and G. D. Wang, ISIJ International 51, 1468 (2011).CrossRefGoogle Scholar
  4. 4.
    X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang, Corrosion Science 90, 140 (2015).CrossRefGoogle Scholar
  5. 5.
    X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang, Wear 332–333, 1286 (2015).CrossRefGoogle Scholar
  6. 6.
    Z. Y. Jiang, J. Tang, W. Sun, A. K. Tieu, and D. Wei, Tribology International 43, 1339 (2010).CrossRefGoogle Scholar
  7. 7.
    X. Cheng, Z. Jiang, J. Zhao, D. Wei, L. Hao, J. Peng, M. Luo, L. Ma, S. Luo, and L. Jiang, Wear 338–339, 178 (2015).CrossRefGoogle Scholar
  8. 8.
    P. A. Munther and J. G. Lenard, Journal of Materials Processing Technology 88, 105 (1999).CrossRefGoogle Scholar
  9. 9.
    L. Luong and T. Heijkoop, Wear 71, 93 (1981).CrossRefGoogle Scholar
  10. 10.
    H. Utsunomiya, T. Nakagawa, and R. Matsumoto, Procedia Manufacturing 15, 46 (2018).CrossRefGoogle Scholar
  11. 11.
    R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 56, 89 (2001).CrossRefGoogle Scholar
  12. 12.
    S. Birosca, D. Dingley, and R. L. Higginson, Journal of Microscopy 213, 235 (2004).CrossRefGoogle Scholar
  13. 13.
    S. Garber and G. Sturgeon, (1959).Google Scholar
  14. 14.
    H. Wriedt, Binary Alloy Phase Diagrams, 2nd edn, ed. B. Massalski 2, (1990).Google Scholar
  15. 15.
    X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang, Corrosion Science 85, 115 (2014).CrossRefGoogle Scholar
  16. 16.
    X. L. Yu, Z. Y. Jiang, J. W. Zhao, D. B. Wei, and C. L. Zhou, Applied Mechanics and Materials 395–396, 273 (2013).CrossRefGoogle Scholar
  17. 17.
    D. B. Lee and J. W. Choi, Oxidation of Metals 64, 319 (2005).CrossRefGoogle Scholar
  18. 18.
    F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).CrossRefGoogle Scholar
  19. 19.
    K. Dohda, C. Boher, F. Rezai-Aria, and N. Mahayotsanun, Friction 3, 1 (2015).CrossRefGoogle Scholar
  20. 20.
    H. Wu, F. Jia, J. Zhao, S. Huang, L. Wang, S. Jiao, H. Huang, and Z. Jiang, Wear 426–427, 792 (2019).CrossRefGoogle Scholar
  21. 21.
    H. Xie, S. Dang, B. Jiang, L. Xiang, S. Zhou, H. Sheng, T. Yang, and F. Pan, Applied Surface Science 475, 847 (2019).CrossRefGoogle Scholar
  22. 22.
    S. Du, J. Sun, and P. Wu, Carbon 140, 338 (2018).CrossRefGoogle Scholar
  23. 23.
    A. S. He, S. Q. Huang, J. H. Yun, H. Wu, Z. Y. Jiang, J. Stokes, S. H. Jiao, L. Z. Wang, and H. Huang, Tribology Letters 65, 40 (2017).CrossRefGoogle Scholar
  24. 24.
    Y. Bao, J. Sun, and L. Kong, Tribology International 114, 257 (2017).CrossRefGoogle Scholar
  25. 25.
    Y. Meng, J. Sun, P. Wu, C. Dong, and X. Yan, Nanomaterials 8, 111 (2018).CrossRefGoogle Scholar
  26. 26.
    H. Wu, J. Zhao, L. Luo, S. Huang, L. Wang, S. Zhang, S. Jiao, H. Huang, and Z. Jiang, Lubricants 6, 57 (2018).CrossRefGoogle Scholar
  27. 27.
    H. Wu, J. Zhao, W. Xia, X. Cheng, A. He, J. H. Yun, L. Wang, H. Huang, S. Jiao, L. Huang, S. Zhang, and Z. Jiang, Journal of Manufacturing Processes 27, 26 (2017).CrossRefGoogle Scholar
  28. 28.
    H. Wu, J. Zhao, W. Xia, X. Cheng, A. He, J. H. Yun, L. Wang, H. Huang, S. Jiao, L. Huang, S. Zhang and Z. Jiang, Tribology International 109, 398 (2017).CrossRefGoogle Scholar
  29. 29.
    H. Wu, J. Zhao, X. Cheng, W. Xia, A. He, J.-H. Yun, S. Huang, L. Wang, H. Huang, S. Jiao and Z. Jiang, Tribology International 117, 24 (2018).CrossRefGoogle Scholar
  30. 30.
    B. G. R. K. Singh Raman, and D. J. Young, Materials Science and Technology 14, 373 (1998).Google Scholar
  31. 31.
    K. Lee, Y. Hwang, S. Cheong, Y. Choi, L. Kwon, J. Lee and S. H. Kim, Tribology Letters 35, 127 (2009).CrossRefGoogle Scholar
  32. 32.
    X. Tao, Z. Jiazheng and X. Kang, Journal of Physics D: Applied Physics 29, 2932 (1996).CrossRefGoogle Scholar
  33. 33.
    R. Dwyer-Joyce, R. Sayles and E. Ioannides, Wear 175, 133 (1994).CrossRefGoogle Scholar
  34. 34.
    S. Mrowec and K. Przybylski, Oxidation of Metals 11, 383 (1977).CrossRefGoogle Scholar
  35. 35.
    M. H. Davies, M. T. Simnad and C. E. Birchenall, Jom 3, 889 (1951).CrossRefGoogle Scholar
  36. 36.
    R. Y. Chen and W. Y. D. Yeun, Oxidation of Metals 59, 433 (2003).CrossRefGoogle Scholar
  37. 37.
    D. P. Burke and R. L. Higginson, Scripta Materialia 42, 277 (2000).CrossRefGoogle Scholar
  38. 38.
    Z.-F. Li, G.-M. Cao, F. Lin, H. Wang and Z.-Y. Liu, Oxidation of Metals 90, 337 (2018).CrossRefGoogle Scholar
  39. 39.
    J. Tominaga, K.-Y. Wakimoto, T. Mori, M. Murakami and T. Yoshimura, Transactions of the Iron and Steel Institute of Japan 22, 646 (1982).CrossRefGoogle Scholar
  40. 40.
    W. Sun, A. K. Tieu, Z. Jiang, H. Zhu and C. Lu, Journal of Materials Processing Technology 155–156, 1300 (2004).CrossRefGoogle Scholar
  41. 41.
    S. Hayashi, K. Mizumoto, S. Yoneda, Y. Kondo, H. Tanei and S. Ukai, Oxidation of Metals 81, 357 (2014).CrossRefGoogle Scholar
  42. 42.
    Y. Shizukawa, S. Hayashi, S. Yoneda, Y. Kondo, H. Tanei and S. Ukai, Oxidation of Metals 86, 315 (2016).CrossRefGoogle Scholar
  43. 43.
    S. Yoneda, S. Hayashi, Y. Kondo, H. Tanei, and S. Ukai, Oxidation of Metals 87, 125 (2017).CrossRefGoogle Scholar
  44. 44.
    X. Yu, Z. Jiang, D. Wei, C. Zhou, Q. Huang, and D. Yang, Wear 302, 1286 (2013).CrossRefGoogle Scholar
  45. 45.
    K. Mori and D. Ito, CIRP Annals 58, 267 (2009).CrossRefGoogle Scholar
  46. 46.
    P. Liu, L. Wei, S. Ye, H. Xu, and Y. Chen, Surface and Coatings Technology 205, 3582 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  2. 2.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia
  3. 3.School of Mechanical and Mining EngineeringThe University of QueenslandBrisbaneAustralia
  4. 4.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  5. 5.Baosteel Research Institute (R&D Centre)Baoshan Iron and Steel Co., Ltd.ShanghaiChina

Personalised recommendations