The Oxidation Behavior of Ni–15Cr–5Al–xSi (x = 0, 1, 3, 5 wt%) Alloys in Air at 1100 °C

  • Erpeng Wang
  • DuanJun Sun
  • Haifei Liu
  • Mingyang Lu
  • Wen Guo
  • Bingxin Zheng
  • Xiuhai ZhangEmail author
Original Paper


In order to explore effect of silicon on the oxidation resistance of Ni-based superalloys, the cyclic oxidation behavior of Ni–15Cr–5Al–xSi (x = 0, 1, 3, 5 wt%) at 1100 °C was studied. The results show that the addition of Si promotes the nucleation of metastable and stable alumina, which facilitates selective Al oxidation to enable a rapid formation of continuous metastable and stable alumina scales, which in turn greatly enhances the oxidation resistance of alloys. The addition of alloyed Si can also enhance the adhesion between matrix and oxide scale. It was determined that the optimal Si content for scale adherence was 3 wt%. However, the adhesion between oxide scale and matrix decreased with higher Si content. One reason could be that the volume shrinkage caused by transformation from metastable alumina to stable alumina. The other is an increase in the thermal stresses generated in the scale with higher silicon contents.

Graphic abstract


Ni-based superalloy High-temperature cyclic oxidation Silicon content Oxidation mechanism Oxide scale 



This research was sponsored by Natural Science Foundation of Guangxi (No. 2015GXNSFAA139252) and National Nature Science Foundation of China (No. 51371059) and Natural Science Foundation of Guangxi (No. 2014GXNSFCA118013).


  1. 1.
    A. Kumar, M. Nasrallah and D. L. Douglass, Oxidation of Metals 8, 227 (1974).CrossRefGoogle Scholar
  2. 2.
    F. H. Stott, G. C. Wood and M. G. Hobby, Oxidation of Metals 3, 103 (1971).CrossRefGoogle Scholar
  3. 3.
    Z. Y. Liu, W. Gao, K. L. Dahm and F. H. Wang, Oxidation of Metals 50, 51 (1998).CrossRefGoogle Scholar
  4. 4.
    M. Shen, P. Zhao, Y. Gu, S. Zhu and F. Wang, Corrosion Science 94, 294 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Xue, Rare Metal Materials and Engineering 38, 1146 (2009).CrossRefGoogle Scholar
  6. 6.
    T. D. Nguyen, J. Q. Zhang and D. J. Young, Corrosion Science 130, 161 (2017).CrossRefGoogle Scholar
  7. 7.
    L. Klein, M. S. Killian and S. Virtanen, Corrosion Science 69, 43 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Bhowmik, H. T. Pang, I. M. Edmonds, C. M. F. Rae and H. J. Stone, Intermetallics 32, 373 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Sato, Y. L. Chiu and R. C. Reed, Acta Materialia 59, 225 (2011).CrossRefGoogle Scholar
  10. 10.
    A. M. Huntz, M. K. Loudjani, C. Séverac, C. Haut and F. Ropital, Materials Science Forum 251–254, 243 (1997).CrossRefGoogle Scholar
  11. 11.
    P. Lv, X. Sun, J. Cai, C. L. Zhang, X. L. Liu and Q. F. Guan, Surface and Coatings Technology 309, 401 (2016).CrossRefGoogle Scholar
  12. 12.
    S. Wang, Y. Wu, C. S. Ni and Y. Niu, Corrosion Science 51, 511 (2009).CrossRefGoogle Scholar
  13. 13.
    S. J. Park, S. M. Seo, Y. S. Yoo, H. W. Jeong and H. J. Jang, Corrosion Science 90, 305 (2015).CrossRefGoogle Scholar
  14. 14.
    H. J. Grabke, M. W. Brumm and B. Wagemann, Materials and Corrosion 47, 675 (1996).CrossRefGoogle Scholar
  15. 15.
    R. D. Liu, S. M. Jiang, C. Q. Guo, J. Gong and C. Sun, Corrosion Science 120, 121 (2016).CrossRefGoogle Scholar
  16. 16.
    W. Z. Li, K. Han, R. Niu, T. Q. Liang, C. W. Lai and X. H. Zhang, Oxidation of Metals 89, 731 (2017).CrossRefGoogle Scholar
  17. 17.
    V. K. Tolpygo, Oxidation of Metals 51, 449 (1999).CrossRefGoogle Scholar
  18. 18.
    Y. Wu, F. Gesmundo and Y. Niu, Oxidation of Metals 65, 53 (2006).CrossRefGoogle Scholar
  19. 19.
    S. Wang, Y. Wu, F. Gesmundo and Y. Niu, Corrosion Science 51, 511 (2009).CrossRefGoogle Scholar
  20. 20.
    C. A. Barrett and C. E. Lowell, Oxidation of Metals 11, 199 (1977).CrossRefGoogle Scholar
  21. 21.
    D. A. Yancheshmeh, M. Esmailian and K. Shirvani, International Journal of Hydrogen Energy 43, 5365 (2017).CrossRefGoogle Scholar
  22. 22.
    R. Prescott and M. J. Graham, Oxidation of metals 38, 233 (1992).CrossRefGoogle Scholar
  23. 23.
    Y. Huang and X. Peng, Corrosion Science 112, 226 (2016).CrossRefGoogle Scholar
  24. 24.
    Y. Niu, Y. Wu and F. Gesmundo, Corrosion Science 48, 1 (2006).CrossRefGoogle Scholar
  25. 25.
    H. J. Grabke, Intermetallics 7, 1153 (1999).CrossRefGoogle Scholar
  26. 26.
    Y. Z. Liu, Q. Wu, S. S. Li, Y. Ma and S. K. Gong, Materials Science Forum 748, 575 (2013).CrossRefGoogle Scholar
  27. 27.
    K. Zhang, Q. M. Wang, C. Sun and F. H. Wang, Corrosion Science 50, 1707 (2008).CrossRefGoogle Scholar
  28. 28.
    D. W. Yun, S. M. Seo, H. W. Jeong and Y. S. Yoo, Corrosion Science 83, 176 (2014).CrossRefGoogle Scholar
  29. 29.
    D. L. Deadmore and C. E. Lowell, Oxidation of Metals 11, 91 (1977).CrossRefGoogle Scholar
  30. 30.
    M. K. Hassanzadeh-Aghdam, R. Ansari and A. Darvizeh, Composites Part A 96, 110 (2017).CrossRefGoogle Scholar
  31. 31.
    D. M. Lipkin, D. R. Clarke, M. Hollatz, M. Bobeth and W. Pompe, Corrosion Science 39, 231 (1997).CrossRefGoogle Scholar
  32. 32.
    G. Bamba, Y. Wouters, A. Galerie, F. Charlot and A. Dellali, Acta Materialia 54, 3917 (2006).CrossRefGoogle Scholar
  33. 33.
    D. J. Sun, C. Y. Liang, E. P. Wang, H. F. Liu and X. H. Zhang, Corrosion Science 133, 336 (2018).CrossRefGoogle Scholar
  34. 34.
    T. D. Nguyen, J. Q. Zhang and D. J. Young, Oxidation of Metals 81, 549 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured MaterialsGuangxi UniversityNanningChina
  2. 2.School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations