Advertisement

Microstructural Investigation of the Thermally Grown Oxide on Grain-Refined Overdoped NiAl–Zr

  • Rachel White
  • Mark WeaverEmail author
Original Paper
  • 6 Downloads

Abstract

The thermally grown oxide on sputter-deposited NiAl–0.09Zr was studied using transmission electron microscopy (TEM) and transmission Kikuchi diffraction (TKD) to microstructurally assess its oxidation resistance. Sputter deposition resulted in a refined grain size of 0.3 μm that was compared to extruded NiAl–Zr with a grain size of approximately 25 μm. Thermogravimetric oxidation of the sputter-deposited material showed a shorter transient regime with lower mass gain than an extruded NiAl–0.1Zr alloy and improved spallation resistance through 50 h of isothermal oxidation at 1000 °C. After 5 h the thermally grown oxide on the sputter-deposited alloy exhibited a three-layer structure consisting of external θ-Al2O3 whiskers, intermediate equiaxed α-Al2O3 grains (< 100 nm) + ZrO2 precipitates and internal columnar α-Al2O3 grains, in contrast to the extruded alloy which showed sparse α growth. After 50 h of oxidation, the three-layer structure was retained, but the top θ-Al2O3 layer was transformed to α-Al2O3. TKD after 50 h showed the top and bottom oxide layers to be composed of high-misorientation α-Al2O3 grains approximately three times smaller than the extruded sample. Monoclinic and tetragonal ZrO2 precipitates were identified in the fine-grained middle region. These features show that grain refinement significantly increases Zr diffusion to the reacting surface, while simultaneously mitigating the effects of overdoping. This increased Zr diffusion is believed to have expedited the formation of a continuous α-Al2O3 layer, resulting in a shorter transient oxidation period.

Keywords

Grain refinement Transmission Kikuchi diffraction Oxidation 

Notes

Acknowledgements

The authors would like to acknowledge partial support from the National Science Foundation under Grant DMR-1411280. This work utilized equipment owned by the Central Analytical Facility (CAF), which is housed at the University of Alabama.

References

  1. 1.
    J. Wang, M. Chen, L. Yang, S. Zhu and F. Wang, Corrosion Science 98, 2015 (530).CrossRefGoogle Scholar
  2. 2.
    F. Wang, Oxidation of Metals 48, 1997 (215).CrossRefGoogle Scholar
  3. 3.
    S. L. Yang, F. H. Wang, Y. Niu and W. T. Wu, Materials Science Forum 369–372, 2001 (361).CrossRefGoogle Scholar
  4. 4.
    Z. Liu, W. Gao, K. Dahm and F. Wang, Acta Metallurgica 46, 1998 (1691).Google Scholar
  5. 5.
    J. Zhang, X. Peng, D. J. Young and F. Wang, Surface and Coatings Technology 217, 2013 (162).CrossRefGoogle Scholar
  6. 6.
    C. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of AIME 245, 1969 (2495).Google Scholar
  7. 7.
    C. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of AIME 245, 1969 (2509).Google Scholar
  8. 8.
    J. G. Goedjen and D. A. Shores, Oxidation of Metals 37, 1992 (125).CrossRefGoogle Scholar
  9. 9.
    M. Maloney, Rapid Solidification Processing and Oxidation of Fine Grained FeCrAl Alloys (Ph.D. Dissertation, Massachusetts Institute of Technology, Boston, 1989).Google Scholar
  10. 10.
    K. R. Lawless, Reports on Progress in Physics 37, 1974 (231).CrossRefGoogle Scholar
  11. 11.
    J. Stringer, B. A. Wilcox and R. I. Jaffee, Oxidation of Metals 5, 1972 (11).CrossRefGoogle Scholar
  12. 12.
    M. D. Merz, Metallurgical Transactions A 10, 1979 (71).CrossRefGoogle Scholar
  13. 13.
    P. Kofstad, Oxidation of Metals 44, 1995 (3).CrossRefGoogle Scholar
  14. 14.
    F. Wang, H. Lou, S. Zhu and W. Wu, Oxidation of Metals 45, 1996 (39).CrossRefGoogle Scholar
  15. 15.
    M. Schutze, Protective Oxide Scales and Their Breakdown, (Wiley, New York, 1997).Google Scholar
  16. 16.
    T. G. Langdon, Metals Forum 1, 1978 (59).Google Scholar
  17. 17.
    S. Hou, S. Zhu, T. Zhang and F. Wang, Applied Surface Science 324, 2015 (1).CrossRefGoogle Scholar
  18. 18.
    S. Yang, F. Wang, Z. Sun and S. Zhu, Intermetallics 10, 2002 (467).CrossRefGoogle Scholar
  19. 19.
    G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 1989 (275).CrossRefGoogle Scholar
  20. 20.
    J. Doychak, “The Evolution and Growth of Al 2 O 3 Scales on β-NiAl,” NASA Contractor Report 175097, (Case Western Reserve University, Cleveland, 1986).Google Scholar
  21. 21.
    C. A. Barrett, Oxidation of Metals 30, 1988 (361).CrossRefGoogle Scholar
  22. 22.
    V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 20, 2003 (261).CrossRefGoogle Scholar
  23. 23.
    B. A. Pint, Electrochemical Society Proceedings 96–26, 1997 (74).Google Scholar
  24. 24.
    B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prubner and K. B. Alexander, Materials Science & Engineering A 245, 1998 (201).CrossRefGoogle Scholar
  25. 25.
    T. Boll, K. A. Unocic, B. A. Pint, A. Martensson and K. Stiller, Oxidation of Metals 88, 2017 (469).CrossRefGoogle Scholar
  26. 26.
    M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1992 (1677).CrossRefGoogle Scholar
  27. 27.
    V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 2000 (59).CrossRefGoogle Scholar
  28. 28.
    F. J. Humphreys, Scripta Materialia 51, 2004 (771).CrossRefGoogle Scholar
  29. 29.
    R. R. Keller and R. H. Geiss, Journal of Microscopy 245, 2011 (245).CrossRefGoogle Scholar
  30. 30.
    P. W. Trimby, Ultramicroscopy 120, 2012 (16).CrossRefGoogle Scholar
  31. 31.
    P. W. Trimby, Y. Cao, Z. Chen, S. Han, K. J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J. T. Wang, J. Wheeler and J. M. Cairney, Acta Materialia 62, 2014 (69).CrossRefGoogle Scholar
  32. 32.
    N. Mortazavi, M. Esmaily and M. Halvarsson, Materials Letters 147, 2015 (42).CrossRefGoogle Scholar
  33. 33.
    A. Garner, A. Gholinia, P. Frankel, M. Gass, I. MacLaren and M. Preuss, Acta Materialia 80, 2014 (159).CrossRefGoogle Scholar
  34. 34.
    M. Abbasi, D. Kim, H. Guim, M. Hosseini, H. Danesh-Manesh and M. Abbasi, ACS Nano 9, 2015 (10991).CrossRefGoogle Scholar
  35. 35.
    A. La Fontaine, H.-W. Yen, P. Trimby, S. Moody, S. Miller, M. Chensee, S. Ringer and J. Cairney, Corrosion Science 85, 2014 (1).CrossRefGoogle Scholar
  36. 36.
    M. Karadge, X. Zhao, M. Preuss and P. Xiao, Scripta Materialia 54, 2006 (639).CrossRefGoogle Scholar
  37. 37.
    J. Doychak and M. Ruhle, Oxidation of Metals 31, 1989 (431).CrossRefGoogle Scholar
  38. 38.
    P. Y. Hou, A. P. Paulikas and B. W. Veal, Materials at High Temperatures 22, 2014 (535).CrossRefGoogle Scholar
  39. 39.
    J. A. Thornton, Journal of Vacuum Science and Technology 11, 1974 (666).CrossRefGoogle Scholar
  40. 40.
    C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 2012 (671).CrossRefGoogle Scholar
  41. 41.
    J. C. Yang, E. Schumann, I. Levin and M. Ruhle, Acta Materialia 46, 1998 (2195).CrossRefGoogle Scholar
  42. 42.
    H. Svensson, P. Knutsson and K. Stiller, Oxidation of Metals 71, 2009 (143).CrossRefGoogle Scholar
  43. 43.
    K. A. Unocic, Y. Chen, D. Shin, B. A. Pint and E. A. Marquis, Micron 109, 2018 (41).CrossRefGoogle Scholar
  44. 44.
    B. A. Pint, J. R. Martin and L. W. Hobbs, Oxidation of Metals 39, 1993 (167).CrossRefGoogle Scholar
  45. 45.
    J. K. Doychak, The Evolution and Growth of Al 2 O 3 Scales on β-NiAl (Ph.D. Dissertation, Case Western Reserve University, Cleveland, 1986).Google Scholar
  46. 46.
    D. Zimmerman, V. K. Tolpygo, M. Ruhle and D. R. Clarke, Zeitschrift fur Metallkunde 94, 2003 (157).CrossRefGoogle Scholar
  47. 47.
    J. Stringer and I. G. Wright, Oxidation of Metals 5, 1972 (59).CrossRefGoogle Scholar
  48. 48.
    H. Hindam and D. P. Whittle, Oxidation of Metals 18, 1982 (245).CrossRefGoogle Scholar
  49. 49.
    A. G. Evans and J. W. Hutchinson, Acta Metallurgica 37, 1989 (909).CrossRefGoogle Scholar
  50. 50.
    J. B. Wachtman, W. R. Cannon and M. J. Matthewson, Mechanical Properties of Ceramics, (Wiley, New York, 2009).CrossRefGoogle Scholar
  51. 51.
    J. Pelleg, Creep in Ceramics, (Springer, New York, 2017).CrossRefGoogle Scholar
  52. 52.
    J. Karch, R. Birringer and H. Gleiter, Nature 330, 1987 (556).CrossRefGoogle Scholar
  53. 53.
    D. R. Clarke, Acta Materialia 51, 2003 (1393).CrossRefGoogle Scholar
  54. 54.
    J. Angenete, K. Stiller and V. Langer, Oxidation of Metals 60, 2003 (47).CrossRefGoogle Scholar
  55. 55.
    J. A. Nychka and D. R. Clarke, Oxidation of Metals 63, 2005 (325).CrossRefGoogle Scholar
  56. 56.
    F. N. Rhines and J. S. Wolf, Metallurgical Transactions 1, 1970 (1701).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations