Advertisement

Corrosion and Carburization Behavior of Heat-Resistant Steels in a High-Temperature Supercritical Carbon Dioxide Environment

  • Yong Gui
  • Zhiyuan Liang
  • Qinxin ZhaoEmail author
Original Paper
  • 36 Downloads

Abstract

The corrosion behavior of heat-resistant steels, including T91, VM12, Super 304H, and Sanicro 25, in high-temperature supercritical carbon dioxide at 650 °C and 15 MPa for 1000 h was investigated. X-ray diffraction, Raman spectroscopy, and glow-discharge optical emission spectrometry were employed to characterize the corrosion products. The results showed that the weight gain of the investigated steels is in the order of T91 > VM12 > Super 304H > Sanicro 25. Compared with the dual layers of Fe3O4 and FexCr3−xO4 on T91 and VM12, the chromia-rich oxide scales on Super 304H and Sanicro 25 enhanced their corrosion resistance. Internal carburization zones were found underneath the oxide scales, indicating the presence of oxidation and carburization reactions in the supercritical carbon dioxide. Moreover, the total carbon uptake into the T91 and VM12 steels approximately followed a parabolic law with experimental time but followed a linear law for the austenitic heat-resistant steel Sanicro 25. A corrosion mechanism that couples oxidation and carburization is summarized and quantified for oxidation and carburization to determine the dominant reaction.

Keywords

Corrosion behavior Supercritical carbon dioxide Heat-resistant steel Carburization 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (51806166), the Innovative Talents Support Plan of China Postdoctoral Foundation (BX2019269) and the Fundamental Research Funds for the Central Universities (xjj2018064).

References

  1. 1.
    X. Wang, Q. Liu, Z. Bai, J. Lei, and H. Jin, Energy Procedia 105, 445 (2017).CrossRefGoogle Scholar
  2. 2.
    M. Atif and F.A. Al-Sulaiman, Renewable and Sustainable Energy Reviews 68, 153 (2017).CrossRefGoogle Scholar
  3. 3.
    M.A. Reyes-Belmonte, A. Sebastián, M. Romero, and J. González-Aguilar, Energy 112, 17 (2016).CrossRefGoogle Scholar
  4. 4.
    F.A. Al-Sulaiman and M. Atif, Energy 82, 61 (2015).CrossRefGoogle Scholar
  5. 5.
    E.K. Levy, X. Wang, C. Pan, C.E. Romero, and C.R. Maya, Journal of CO2 Utilization 23, 20 (2018).CrossRefGoogle Scholar
  6. 6.
    C. Pumaneratkul, H. Yamasaki, H. Yamaguchi, S. Kitamura, and Y. Sako, Energy Procedia 105, 1029 (2017).CrossRefGoogle Scholar
  7. 7.
    C. Wu, S. Wang, and J. Li, Energy Conversion and Management 171, 936 (2018).CrossRefGoogle Scholar
  8. 8.
    L. Santini, C. Accornero, and A. Cioncolini, Applied Energy 181, 446 (2016).CrossRefGoogle Scholar
  9. 9.
    D.V.D. Maio, A. Boccitto, and G. Caruso, Energy Procedia 82, 819 (2015).CrossRefGoogle Scholar
  10. 10.
    K. Manjunath, O.P. Sharma, S.K. Tyagi, and S.C. Kaushik, Energy Conversion and Management 155, 262 (2018).CrossRefGoogle Scholar
  11. 11.
    O.P. Sharma, S.C. Kaushik, and K. Manjunath, Thermal Science and Engineering Progress 3, 62 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. Le Moullec, Energy Procedia 37, 1180 (2013).CrossRefGoogle Scholar
  13. 13.
    Y. Ahn, S.J. Bae, M. Kim, S.K. Cho, S. Baik, J.I. Lee, and J.E. Cha, Nuclear Engineering and Technology 47, 647 (2015).CrossRefGoogle Scholar
  14. 14.
    P. Kumar and K. Srinivasan, Applied Thermal Engineering 109, 831 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Marchionni, G. Bianchi, K.M. Tsamos, and S.A. Tassou, Energy Procedia 123, 305 (2017).CrossRefGoogle Scholar
  16. 16.
    H. Chen, S.H. Kim, C. Long, C. Kim, and C. Jang, Progress in Natural Science: Materials International 28, 731 (2018).CrossRefGoogle Scholar
  17. 17.
    H.J. Lee, G.O. Subramanian, S.H. Kim, and C. Jang, Corrosion Science 111, 649 (2016).CrossRefGoogle Scholar
  18. 18.
    B. Pint and J. Keiser, JOM 67, 2615 (2015).CrossRefGoogle Scholar
  19. 19.
    B.A. Pint and J.R. Keiser, Supercritical CO2 Compatibility of Structural Alloys at 400–750 °C, Vol. 5 (Oak Ridge National Lab. (ORNL), Oak Ridge, TN, 2016), p. 4034.Google Scholar
  20. 20.
    B.A. Pint, R.G. Brese, and J.R. Keiser, Effect of Pressure on Supercritical CO2 Compatibility of Structural Alloys at 750 °C, Vol. 68 (Oak Ridge National Lab. (ORNL), Oak Ridge, TN, 2017), p. 151.Google Scholar
  21. 21.
    B. Pint, J. Lehmusto, M. J. Lance and J. Keiser, Materials and Corrosion (2019).  https://doi.org/10.1002/maco.201810652.
  22. 22.
    T. Furukawa, Y. Inagaki and M. Aritomi, Progress in Nuclear Energy 53, 1050 (2011).CrossRefGoogle Scholar
  23. 23.
    T. Furukawa and F. Rouillard, Progress in Nuclear Energy 82, 136 (2015).CrossRefGoogle Scholar
  24. 24.
    F. Rouillard and T. Furukawa, Corrosion Science 105, 120 (2016).CrossRefGoogle Scholar
  25. 25.
    G.R. Holcomb, C. Carney, and Ö.N. Doğan, Corrosion Science 109, 22 (2016).CrossRefGoogle Scholar
  26. 26.
    T. Furukawa, Y. Inagaki, and M. Aritomi, JPES 4, 252 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Sarrade, D. Féron, F. Rouillard, S. Perrin, R. Robin, J.-C. Ruiz, and H.-A. Turc, The Journal of Supercritical Fluids 120, 335 (2017).CrossRefGoogle Scholar
  28. 28.
    F. Rouillard, M. Tabarant, and J.C. Ruiz, Oxidation of Metals 77, 57 (2012).CrossRefGoogle Scholar
  29. 29.
    H.E. McCoy, Corrosion, 21, 84 (1965).CrossRefGoogle Scholar
  30. 30.
    D. Young, P. Huczkowski, T. Olszewski, T. Hüttel, L. Singheiser, and W.J. Quadakkers, Corrosion Science 88, 161 (2014).CrossRefGoogle Scholar
  31. 31.
    T. Gheno, D. Monceau, J. Zhang, and D.J. Young, Corrosion Science 53, 2767 (2011).CrossRefGoogle Scholar
  32. 32.
    B. Pint, K. Unocic, R. G. Brese, and J. Keiser, Materials at High Temperatures 35, 39 (2018).CrossRefGoogle Scholar
  33. 33.
    F. Rouillard, L. Martinelli, and J.C. Ruiz, Oxidation of Metals 77, 27 (2012).CrossRefGoogle Scholar
  34. 34.
    J. Yu, Y. Zhang, X. Jin, L. Chen, J. Du, and W. Xue, Surface and Coatings Technology 363, 411 (2019).CrossRefGoogle Scholar
  35. 35.
    Z. Liang, Y. Gui, Y. Wang, and Q. Zhao, Energy 175, 345 (2019).CrossRefGoogle Scholar
  36. 36.
    L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant, and K. Rousseau, Corrosion Science 100, 253 (2015).CrossRefGoogle Scholar
  37. 37.
    G. Cao, V. Firouzdor, K. Sridharan, M. Anderson, and T.R. Allen, Corrosion Science 60, 246 (2012).CrossRefGoogle Scholar
  38. 38.
    K. Bongartz, W.J. Quadakkers, R. Schulten, and H. Nickel, Metallurgical Transactions A 20, 1021 (1989).CrossRefGoogle Scholar
  39. 39.
    J.-O. Andersson, Metallurgical Transactions A 19, 627 (1988).CrossRefGoogle Scholar
  40. 40.
    I. Wolf and H.J. Grabke, Solid State Communications 54, 5 (1985).CrossRefGoogle Scholar
  41. 41.
    T.D. Nguyen, A.L. Fontaine, J.M. Cairney, J. Zhang, and D.J. Young, Materials at High Temperatures 35, 1 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Thermal Fluid Science and Engineering of MOE, School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations