Coordination of Pre-oxidation Time and Temperature for a Better Corrosion Resistance to CO2 at 550 °C
- 20 Downloads
Abstract
Influence of pre-oxidation treatment on the oxidation resistance of F91 to CO2 at 550 °C was investigated. The formation of the thin scale of (Fe, Cr)2O3 corundum-type oxides was achieved by pre-oxidation in air, which significantly improved the oxidation resistance. Nodule nucleation and subsequent growth were analyzed and interpreted. Influences of pre-oxidation temperature and time on the oxidation resistance to CO2 are explained by presenting concepts of insufficient pre-oxidation and excess pre-oxidation. A coordination between pre-oxidation temperature and time is proposed.
Keywords
Pre-oxidation Carbon dioxide 9Cr steel Nodule growthNotes
Acknowledgements
This work was supported by Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China [2015GB118001]. Yu Zheng thanks the CSC for the financial support [201706210110] to visit University of Pittsburgh.
References
- 1.S. Sridhar, P. Rozzelle, B. Morreale and D. Alman, Metallurgical and Materials Transactions A 42, 871 (2011).CrossRefGoogle Scholar
- 2.S. M. Benson and F. M. Orr, MRS Bulletin 33, 303 (2008).CrossRefGoogle Scholar
- 3.IPCC, in Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds. by B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. J. Meyer (Cambridge University Press, Cambridge, 2005)Google Scholar
- 4.C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).CrossRefGoogle Scholar
- 5.J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).CrossRefGoogle Scholar
- 6.C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).CrossRefGoogle Scholar
- 7.K. Kaya, S. Hayashi and S. Ukai, ISIJ International 54, 1379 (2014).CrossRefGoogle Scholar
- 8.J. Wang, S. Lu, L. Rong, D. Li and Y. Li, Corrosion Science 111, 13 (2016).CrossRefGoogle Scholar
- 9.S. Tang, S. Zhu, X. Tang, H. Pan, X. Chen and Z. D. Xiang, Corrosion Science 80, 374 (2014).CrossRefGoogle Scholar
- 10.T. D. Nguyen, J. Zhang and D. J. Young, Corrosion Science 76, 231 (2013).CrossRefGoogle Scholar
- 11.F. Abe, H. Kutsumi, H. Haruyama and H. Okubo, Corrosion Science 114, 1 (2016).CrossRefGoogle Scholar
- 12.T. Sundararajan, S. Kuroda, T. Itagaki and F. Abe, ISIJ International 43, 95 (2003).CrossRefGoogle Scholar
- 13.T. Sundararajan, S. Kuroda and F. Abe, Corrosion Science 47, 1129 (2005).CrossRefGoogle Scholar
- 14.T. Jayakumar, M. D. Mathew and K. Laha, Procedia Engineering 55, 259 (2013).CrossRefGoogle Scholar
- 15.L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant and K. Rousseau, Corrosion Science 100, 253 (2015).CrossRefGoogle Scholar
- 16.F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 27 (2012).CrossRefGoogle Scholar
- 17.F. Rouillard and T. Furukawa, Corrosion Science 105, 120 (2016).CrossRefGoogle Scholar
- 18.Y. Zheng, M. H. S. Bidabadi, L. Yang, A. Rehman, C. Zhang, H. Chen and Z. G. Yang, Oxidation of Metals 1 (2018).Google Scholar
- 19.M. Halvarsson, J. E. Tang, H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 48, 2014 (2006).CrossRefGoogle Scholar
- 20.I. Wolf, H. J. Grabke and P. Schmidt, Oxidation of Metals 29, 289 (1988).CrossRefGoogle Scholar
- 21.H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).CrossRefGoogle Scholar
- 22.M. H. S. Bidabadi, Z. Yu, A. Rehman, J. G. He, C. Zhang, H. Chen, and Z.-G. Yang, Oxidation of Metals 1 (n.d.).Google Scholar
- 23.K.F. McCarty and D.R. Boehme, Journal of Solid State Chemistry 79, 19 (1989).CrossRefGoogle Scholar
- 24.D. L. A. De Faria, S. Venâncio Silva and M. T. De Oliveira, Journal of Raman Spectroscopy 28, 873 (1997).CrossRefGoogle Scholar