Advertisement

Coordination of Pre-oxidation Time and Temperature for a Better Corrosion Resistance to CO2 at 550 °C

  • Yu Zheng
  • Mohammad Hassan Shirani Bidabadi
  • Guofeng Wang
  • Chi Zhang
  • Hao Chen
  • Zhigang YangEmail author
Original Paper
  • 20 Downloads

Abstract

Influence of pre-oxidation treatment on the oxidation resistance of F91 to CO2 at 550 °C was investigated. The formation of the thin scale of (Fe, Cr)2O3 corundum-type oxides was achieved by pre-oxidation in air, which significantly improved the oxidation resistance. Nodule nucleation and subsequent growth were analyzed and interpreted. Influences of pre-oxidation temperature and time on the oxidation resistance to CO2 are explained by presenting concepts of insufficient pre-oxidation and excess pre-oxidation. A coordination between pre-oxidation temperature and time is proposed.

Keywords

Pre-oxidation Carbon dioxide 9Cr steel Nodule growth 

Notes

Acknowledgements

This work was supported by Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China [2015GB118001]. Yu Zheng thanks the CSC for the financial support [201706210110] to visit University of Pittsburgh.

References

  1. 1.
    S. Sridhar, P. Rozzelle, B. Morreale and D. Alman, Metallurgical and Materials Transactions A 42, 871 (2011).CrossRefGoogle Scholar
  2. 2.
    S. M. Benson and F. M. Orr, MRS Bulletin 33, 303 (2008).CrossRefGoogle Scholar
  3. 3.
    IPCC, in Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds. by B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. J. Meyer (Cambridge University Press, Cambridge, 2005)Google Scholar
  4. 4.
    C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).CrossRefGoogle Scholar
  5. 5.
    J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).CrossRefGoogle Scholar
  6. 6.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).CrossRefGoogle Scholar
  7. 7.
    K. Kaya, S. Hayashi and S. Ukai, ISIJ International 54, 1379 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Wang, S. Lu, L. Rong, D. Li and Y. Li, Corrosion Science 111, 13 (2016).CrossRefGoogle Scholar
  9. 9.
    S. Tang, S. Zhu, X. Tang, H. Pan, X. Chen and Z. D. Xiang, Corrosion Science 80, 374 (2014).CrossRefGoogle Scholar
  10. 10.
    T. D. Nguyen, J. Zhang and D. J. Young, Corrosion Science 76, 231 (2013).CrossRefGoogle Scholar
  11. 11.
    F. Abe, H. Kutsumi, H. Haruyama and H. Okubo, Corrosion Science 114, 1 (2016).CrossRefGoogle Scholar
  12. 12.
    T. Sundararajan, S. Kuroda, T. Itagaki and F. Abe, ISIJ International 43, 95 (2003).CrossRefGoogle Scholar
  13. 13.
    T. Sundararajan, S. Kuroda and F. Abe, Corrosion Science 47, 1129 (2005).CrossRefGoogle Scholar
  14. 14.
    T. Jayakumar, M. D. Mathew and K. Laha, Procedia Engineering 55, 259 (2013).CrossRefGoogle Scholar
  15. 15.
    L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant and K. Rousseau, Corrosion Science 100, 253 (2015).CrossRefGoogle Scholar
  16. 16.
    F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 27 (2012).CrossRefGoogle Scholar
  17. 17.
    F. Rouillard and T. Furukawa, Corrosion Science 105, 120 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. Zheng, M. H. S. Bidabadi, L. Yang, A. Rehman, C. Zhang, H. Chen and Z. G. Yang, Oxidation of Metals 1 (2018).Google Scholar
  19. 19.
    M. Halvarsson, J. E. Tang, H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 48, 2014 (2006).CrossRefGoogle Scholar
  20. 20.
    I. Wolf, H. J. Grabke and P. Schmidt, Oxidation of Metals 29, 289 (1988).CrossRefGoogle Scholar
  21. 21.
    H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).CrossRefGoogle Scholar
  22. 22.
    M. H. S. Bidabadi, Z. Yu, A. Rehman, J. G. He, C. Zhang, H. Chen, and Z.-G. Yang, Oxidation of Metals 1 (n.d.).Google Scholar
  23. 23.
    K.F. McCarty and D.R. Boehme, Journal of Solid State Chemistry 79, 19 (1989).CrossRefGoogle Scholar
  24. 24.
    D. L. A. De Faria, S. Venâncio Silva and M. T. De Oliveira, Journal of Raman Spectroscopy 28, 873 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu Zheng
    • 1
  • Mohammad Hassan Shirani Bidabadi
    • 1
  • Guofeng Wang
    • 2
  • Chi Zhang
    • 1
  • Hao Chen
    • 1
  • Zhigang Yang
    • 1
    Email author
  1. 1.Key Laboratory of Advanced Materials, Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations