Effect of Nanostructured Surface on the Corrosion Behavior of RAFM Steels
- 35 Downloads
Abstract
This study investigated the effect of a preformed nanostructured surface on the corrosion behavior of 9Cr2WVTa reduced activation ferritic/martensitic (RAFM) steel and 9Cr+AlSi steel (9Cr2WVTa with the 0.12 wt.% Al and 0.68 wt.% Si addition) at 700 °C in air and at 550 °C in liquid lead–bismuth eutectic (LBE) alloys. The nanostructured surface layer was fabricated by surface mechanical rolling treatment (SMRT). The results showed that the SMRT 9Cr+AlSi sample has a lower oxidation rate than the SMRT 9Cr2WVTa steel at 700 °C in air, due to the faster diffusion rates of Al, Cr and Si in the nanostructure and a higher diffusion driving force increased by Cr. The SMRT 9Cr+AlSi sample at 550 °C in oxygen-saturated LBE alloy also had a higher oxidation rate, due to the formation of Al and Si oxides in the internal oxide layer.
Graphical Abstract
Keywords
Nanostructured surface RAFM Corrosion LBE alloyNotes
Acknowledgements
This work was financially supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91226204) and the Strategic Priority Research Program of the Chinese Academy of Science (No. XDA03010304).
References
- 1.R. Klueh and A. Nelson, Journal of Nuclear Materials 371, (1), 2007 (37–52).CrossRefGoogle Scholar
- 2.H. Tanigawa, K. Shiba, H. Sakasegawa, T. Hirose and S. Jitsukawa, Fusion Engineering and Design 86, (9), 2011 (2549–2552).CrossRefGoogle Scholar
- 3.A. Kohyama, Y. Kohno, K. Asakura and H. Kayano, Journal of Nuclear Materials 212, 1994 (684–689).CrossRefGoogle Scholar
- 4.N. Baluc, R. Schäublin, P. Spätig and M. Victoria, Nuclear Fusion 44, (1), 2004 (56).CrossRefGoogle Scholar
- 5.G. Butterworth, Journal of Nuclear Materials 179, 1991 (135–142).CrossRefGoogle Scholar
- 6.R. Klueh and E. Bloom, Nuclear Engineering and Design. Fusion 2, (3), 1985 (383–389).CrossRefGoogle Scholar
- 7.D. Dulieu, K. Tupholme and G. Butterworth, Journal of Nuclear Materials 141, 1986 (1097–1101).CrossRefGoogle Scholar
- 8.M. Tamura, H. Hayakawa, M. Tanimura, A. Hishinuma and T. Kondo, Journal of Nuclear Materials 141, 1986 (1067–1073).CrossRefGoogle Scholar
- 9.T. Noda, F. Abe, H. Araki and M. Okada, Journal of Nuclear Materials 141, 1986 (1102–1106).CrossRefGoogle Scholar
- 10.Z. Lu, R. Faulkner, N. Riddle, F. Martino and K. Yang, Journal of Nuclear Materials 386, 2009 (445–448).CrossRefGoogle Scholar
- 11.H. Qun-ying, L. Chun-jing, L. Yan-fen, L. Shao-jun, W. Yi-can, L. Jian-gang, W. Fa-rong, J. Xin, S. Yi-yin and Y. Jin-nan, Chinese Journal of Nuclear Science and Engineering 1, 2007 (008).Google Scholar
- 12.J. S. Dunning, D. E. Alman and J. C. Rawers, Oxidation of Metals 57, (5), 2002 (409–425).CrossRefGoogle Scholar
- 13.T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, (1), 2004 (125–142).CrossRefGoogle Scholar
- 14.S. G. Wang, M. Sun, H. B. Han, K. Long and Z. D. Zhang, Corrosion Science 72, 2013 (64–72).CrossRefGoogle Scholar
- 15.R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, (ASTM, West Conshohocken, 2001).CrossRefGoogle Scholar
- 16.N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, New York, 2006), p. 131.CrossRefGoogle Scholar
- 17.S. Sadique, A. Mollah, M. Islam, M. Ali, M. Megat and S. Basri, Oxidation of Metals 54, (5–6), 2000 (385–400).CrossRefGoogle Scholar
- 18.F. H. Stott, in Materials Science Forum, Vol. 251 (Trans Tech Publications, 1997), pp. 19–32.Google Scholar
- 19.F. H. Stott and G. C. Wood, Oxidation of Metals 44, 1995 (113–145).CrossRefGoogle Scholar
- 20.C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, (11), 1971 (1782–1790).CrossRefGoogle Scholar
- 21.G. N. Irving, J. Stringer and D. P. Whittle, Corrosion 33, 1977 (56–60).CrossRefGoogle Scholar
- 22.S. W. Guan and W. W. Smeltzer, Oxidation of Metals 42, 1994 (375).Google Scholar
- 23.J. F. Radavich, Corrosion 15, 1959 (613–617).CrossRefGoogle Scholar
- 24.D. E. Jones and J. Stringer, Oxidation of Metals 9, 1975 (409).CrossRefGoogle Scholar
- 25.F. H. Stott, G. J. Gabriel, F. I. Wei and G. C. Wood, Materials and Corrosion 38, (9), 1987 (521–531).CrossRefGoogle Scholar
- 26.B. Gleeson and M. A. Harper, Oxidation of Metals 49, (3–4), 1998 (373–399).CrossRefGoogle Scholar
- 27.G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, (5–6), 2010 (319–340).CrossRefGoogle Scholar
- 28.L. Mikkelsen, S. Linderoth, J. Bilde-Sørensen, in Materials Science Forum, (Trans Tech Publ, 2004), p. 117.Google Scholar
- 29.DE Jones and J. Stringer, Oxidation of Metals 9, (5), 1975 (409–413).CrossRefGoogle Scholar
- 30.E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 106, (11), 1959 (941–948).CrossRefGoogle Scholar
- 31.G. R. Holcomb and D. E. Alman, Scripta Materialia 54, (10), 2006 (1821–1825).CrossRefGoogle Scholar
- 32.Y. H. Lu, Z. B. Wang, Y. Y. Song and L. J. Rong, Corrosion Science 102, 2016 (301–309).CrossRefGoogle Scholar
- 33.X. Peng, Nanoscale 2, 2010 (262–268).CrossRefGoogle Scholar
- 34.F. H. Wang, Oxidation of Metals 48, 1997 (215–224).CrossRefGoogle Scholar
- 35.F. Stott, G. Gabriel, F. Wei and G. Wood, Materials and Corrosion 38, (9), 1987 (521–531).CrossRefGoogle Scholar
- 36.B. Gleeson and M. Harper, Lifetime Modelling of High Temperature Corrosion Processes:(EFC 34), (Maney Publishing, London, 2001), p. 167.Google Scholar