Comparison of Microstructural Evolution of Oxides Formed on F91 Martensitic Steel Upon Breakaway Oxidation at 700 °C in Air and CO2

  • Yu Zheng
  • Mohammad Hassan Shirani Bidabadi
  • Guofeng Wang
  • Chi Zhang
  • Hao Chen
  • Zhi-Gang YangEmail author
Original Paper


The microstructure of the oxides formed on F91 steel upon breakaway oxidation in air and CO2 at 700 °C was characterized and compared. It was observed that the Cr-rich corundum layer became humped and disrupted upon breakaway oxidation in air in the first stage. In contrast, spinel was found to form in CO2 without any humping of the Cr-rich layer upon breakaway oxidation. Whether or not the humping and disrupting of the Cr-rich layer were present was related to the form of oxide. Specifically, corundum oxide was facile in air, whereas spinel oxide was facile in CO2.


Air Carbon dioxide Oxidation Characterization 9Cr steel 



This work was supported by Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China [2015GB118001]. Yu Zheng thanks the CSC for the financial support [201706210110] to visit University of Pittsburgh.


  1. 1.
    A. M. Huntz, A. Reckmann, C. Haut, C. Sévérac, M. Herbst, F. C. T. Resende and A. C. S. Sabioni, Materials Science and Engineering A 447, 266 (2007).CrossRefGoogle Scholar
  2. 2.
    H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).CrossRefGoogle Scholar
  3. 3.
    M. Halvarsson, J. E. Tang, H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 48, 2014 (2006).CrossRefGoogle Scholar
  4. 4.
    A. Col, V. Parry and C. Pascal, Corrosion Science 114, 17 (2017).CrossRefGoogle Scholar
  5. 5.
    K. Kaya, S. Hayashi and S. Ukai, ISIJ International 54, 1379 (2014).CrossRefGoogle Scholar
  6. 6.
    J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).CrossRefGoogle Scholar
  7. 7.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).CrossRefGoogle Scholar
  8. 8.
    D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Scripta Materialia 77, 29 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Gheno, D. Monceau and D. J. Young, Corrosion Science 64, 222 (2012).Google Scholar
  10. 10.
    T. D. Nguyen, J. Q. Zhang and D. J. Young, Materials at High Temperatures 32, 16 (2015).CrossRefGoogle Scholar
  11. 11.
    B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta and T. F. Wall, Progress in Energy and Combustion Science 31, 283 (2005).CrossRefGoogle Scholar
  12. 12.
    T. Pikkarainen, A. Tourunen and J. Hämäläinen, Energy Materials 2, 78 (2007).CrossRefGoogle Scholar
  13. 13.
    S. Sridhar, P. Rozzelle, B. Morreale and D. Alman, Metallurgical and Materials Transactions A 42, 871 (2011).CrossRefGoogle Scholar
  14. 14.
    F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 27 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Rouillard and L. Martinelli, Oxidation of Metals 77, 71 (2012).CrossRefGoogle Scholar
  16. 16.
    L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant and K. Rousseau, Corrosion Science 100, 253 (2015).CrossRefGoogle Scholar
  17. 17.
    C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).CrossRefGoogle Scholar
  18. 18.
    I. Wolf, H. J. Grabke and P. Schmidt, Oxidation of Metals 29, 289 (1988).CrossRefGoogle Scholar
  19. 19.
    G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 319 (2010).CrossRefGoogle Scholar
  20. 20.
    D. Young, P. Huczkowski, T. Olszewski, T. Hüttel, L. Singheiser and W. J. Quadakkers, Corrosion Science 88, 161 (2014).CrossRefGoogle Scholar
  21. 21.
    T. Gheno, D. Monceau, J. Zhang and D. J. Young, Corrosion Science 53, 2767 (2011).CrossRefGoogle Scholar
  22. 22.
    K. F. McCarty and D. R. Boehme, Journal of Solid State Chemistry 79, 19 (1989).CrossRefGoogle Scholar
  23. 23.
    D. L. A. De Faria, S. Venâncio Silva and M. T. De Oliveira, Journal of Raman Spectroscopy 28, 873 (1997).CrossRefGoogle Scholar
  24. 24.
    R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 81 (1992).CrossRefGoogle Scholar
  25. 25.
    I. Barin and G. Platzki, Thermochemical Data of Pure Substances, (Wiley, New York, 1989).Google Scholar
  26. 26.
    B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J. E. Svensson and L. G. Johansson, Oxidation of Metals 75, 183 (2011).CrossRefGoogle Scholar
  27. 27.
    J. Töpfer, S. Aggarwal and R. Dieckmann, Solid State Ionics 81, 251 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu Zheng
    • 1
  • Mohammad Hassan Shirani Bidabadi
    • 1
  • Guofeng Wang
    • 2
  • Chi Zhang
    • 1
  • Hao Chen
    • 1
  • Zhi-Gang Yang
    • 1
    Email author
  1. 1.Key Laboratory of Advanced Materials, Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations