Advertisement

Kinetics of the Catastrophic Oxidation of Metallic Copper Under the Influence of PbO

  • Anton Klimashin
Original Paper
  • 6 Downloads

Abstract

This paper shows that copper, when in direct contact with lead (II) oxide, is subject to catastrophic oxidation at 800 °C in air. Isothermal kinetics of this oxidation were found to obey the parabolic rate law, which is evidence of diffusion limiting of the process. The calculated parabolic rate constant of copper oxidation is 5.3 × 10−5 and 7.2 × 10−5 kg2 m−4 s−1 at a specific PbO mass of 0.35 and 0.8 kg m−2, respectively, which are two orders of magnitude higher than the value of pure copper under the same conditions. This is due to higher (as compared to solid oxides) diffusion coefficients in the oxide melt contained in the oxide layer. The microstructure and the phase composition of the formed oxide layer were also investigated.

Keywords

Catastrophic oxidation High temperature Copper Lead oxide Oxide melt 

Notes

Acknowledgements

This work was funded by RFBR according to the research Project No. 18-33-00737 (TG–DTA, XRD) and carried out according to the state Task No. 007-00129-18-00 (SEM–EDX).

References

  1. 1.
    R. R. Moskalyka and A. M. Alfantazi, Minerals Engineering 16, 893 (2003).  https://doi.org/10.1016/j.mineng.2003.08.002.CrossRefGoogle Scholar
  2. 2.
    J. Schloesser, T. Hentrich–Fedorova, M. Baeker and J. Rösler, Journal of Solid Mechanics and Materials Engineering 4, 189 (2010).  https://doi.org/10.1299/jmmp.4.189.CrossRefGoogle Scholar
  3. 3.
    R. N. Wright, Process Engineering and Metallurgy 2016.  https://doi.org/10.1016/B978-0-12-802650-2.00013-3.Google Scholar
  4. 4.
    W. D. Riley and H. V. Makar, Conservation & Recycling 9, 315 (1986).  https://doi.org/10.1016/0361-3658(86)90066-4.CrossRefGoogle Scholar
  5. 5.
    A. A. Klimashin and V. V. Belousov, Corrosion Science 53, 3150 (2011).  https://doi.org/10.1016/j.corsci.2011.05.058.CrossRefGoogle Scholar
  6. 6.
    A. A. Klimashin and V. V. Belousov, Oxidation of Metals 76, 359 (2011).  https://doi.org/10.1007/s11085-011-9260-8.CrossRefGoogle Scholar
  7. 7.
    V. V. Belousov, Oxidation of Metals 38, 289 (1992).  https://doi.org/10.1007/BF00666916.CrossRefGoogle Scholar
  8. 8.
    W. C. Leslie and M. G. Fontana, TRANS ASM 41, 1213 (1949).Google Scholar
  9. 9.
    J. L. Meijering and G. W. Rathenau, Nature 165, 240 (1950).  https://doi.org/10.1038/165240a0.CrossRefGoogle Scholar
  10. 10.
    V. V. Belousov and A. A. Klimashin, Russian Chemical Reviews 82, 273 (2013).  https://doi.org/10.1070/RC2013v082n03ABEH004343.CrossRefGoogle Scholar
  11. 11.
    A. A. Klimashin and V. V. Belousov, Metallurgical and Materials Transactions B 47, 749 (2016).  https://doi.org/10.1007/s11663-015-0510-z.CrossRefGoogle Scholar
  12. 12.
    C. Wagner, The Journal of Physical Chemistry B 32, 447 (1936).Google Scholar
  13. 13.
    V. V. Belousov, Oxidation of Metals 42, 511 (1994).  https://doi.org/10.1007/BF01046763.Google Scholar
  14. 14.
    V. V. Belousov, Russian Chemical Reviews 67, 563 (1998).  https://doi.org/10.1070/RC1998v067n07ABEH000374.CrossRefGoogle Scholar
  15. 15.
    V. V. Belousov and B. S. Bokshtein, Oxidation of Metals 50, 389 (1998).  https://doi.org/10.1023/A:1018852708009.CrossRefGoogle Scholar
  16. 16.
    V. V. Belousov, Oxidation of Metals 67, 235 (2007).  https://doi.org/10.1007/s11085-007-9054-1.CrossRefGoogle Scholar
  17. 17.
    V. V. Belousov, Corrosion Science 52, 68 (2010).  https://doi.org/10.1016/j.corsci.2009.08.044.CrossRefGoogle Scholar
  18. 18.
    P. Isler and W. Form, Journal of the Institute of Metals 100, 100 (1972).Google Scholar
  19. 19.
    S. Kuyucak and M. Sahoo, Canadian Metallurgical Quarterly 35, 1 (1996).  https://doi.org/10.1179/cmq.1996.35.1.1.CrossRefGoogle Scholar
  20. 20.
    T. Archibald and R. Grace, TRANS TMS-AIME 212, 658 (1958).Google Scholar
  21. 21.
    G. Preston and L. Birkumshaw, Philosophical Magazine 25, 769 (1938).Google Scholar
  22. 22.
    J. S. Anderson and M. Sterns, Journal of Inorganic and Nuclear Chemistry 11, 272 (1959).  https://doi.org/10.1016/0022-1902(59)80041-5.CrossRefGoogle Scholar
  23. 23.
    H. Kitaguchi, J. Takada, K. Oda and Y. Miura, Journal of Materials Research 5, 929 (1990).  https://doi.org/10.1557/JMR.1990.0929.CrossRefGoogle Scholar
  24. 24.
    K. Mimura, J.-W. Lim, M. Isshiki, Y. Zhu and Q. Jiang, Metallurgical and Materials Transactions A 37, 1231 (2005).  https://doi.org/10.1007/s11661-006-1074-y.CrossRefGoogle Scholar
  25. 25.
    A. A. Klimashin and V. V. Belousov, Journal of The Electrochemical Society 164, H5353 (2017).  https://doi.org/10.1149/2.0531708jes.CrossRefGoogle Scholar
  26. 26.
    M. Milanova, R. Iordanova and K. L. Kostov, Journal of Non-Crystalline Solids 355, 379 (2009).  https://doi.org/10.1016/j.jnoncrysol.2008.12.004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations