Advertisement

Corrosion Evaluation and Material Selection for Supercritical Water Reactor Used for Heavy Oil Upgradation

  • M. Faizan KhanEmail author
  • Akeem Yusuf Adesina
  • Sikandar Khan
  • Anwar Ul-Hamid
  • Luai M. Al-Hems
Review
  • 48 Downloads

Abstract

Supercritical water is uniquely a green medium for diverse applications because of its changing nature from polar to non-polar. Owing to this property, it is being considered for heavy oil upgradation since it dissolves both organics (oil) and hydrogen while inorganics behave conversely. However, because of the high pressure and temperature (22.1 MPa, 374 °C), corrosive environment (chlorides, sulfides and salt deposition) and stresses involved, there are serious concerns encountered while utilizing supercritical water in reactors. These include change in the component-material microstructure due to hydrogen ingress, sulfide stress corrosion cracking and salt deposition leading to pitting and de-alloying. Various alloys such as ferritic–martensitic steels, austenitic stainless steels, Ti-, Ni- and Zr-based alloys have been used, while new alloys and materials are continuously being investigated to considerably help abate these problems and ultimately improve the life of reactors. Despite significant past efforts in material development, reactors still suffer from these problems and challenges. This review assesses materials selection, the current progress in material development as well as their potentials in ameliorating reactors resistance to oxidation, pitting, embrittlement, etc. This study aims to improve understanding of material selection for supercritical water reactors based on the corrosive environment of the reactor and hence help engineers to make insightful decisions in selecting material for the specific corrosive environment.

Graphical Abstract

Schematic illustration of materials susceptibility in supercritical water reactor

Keywords

Supercritical water Heavy oil upgrading Corrosion Oxidation Reduction Reactors Alloys Materials 

Notes

Acknowledgements

Special thanks to Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia and the Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.

References

  1. 1.
    S. B. Suslick, D. J. Schiozer, F. Nepomuceno, and R. Furtado, Forecasting the development of heavy-oil reserves in ultra-deep waters using technological risk models, SPE Hydrocarbon Economics and Evaluation Symposium, 5–8 April, Dallas, Texas, USA (2003).Google Scholar
  2. 2.
    D. Lanier, Heavy oil—a major energy source for the 21st century. UNITAR Centre for heavy crude and tar sands, No. 1998.039 (1998).Google Scholar
  3. 3.
    R. F. Meyer and E. D. Attanasi, Heavy oil and Natural Bitumen, Strategic Petroleum Resources, (United States Geological Survey USGS, Reston, 2003).CrossRefGoogle Scholar
  4. 4.
    O. V. Trevisan, A. C. L. Lisboa, F. A. França, and W. Trindade, Oil production in offshore fields, an overview of the Brazilian technology development program. World Heavy Oil Conference, 1–7, Pequim, China (2006).Google Scholar
  5. 5.
    R. O. Canıaza and C. Erkey, Chemical Engineering Research and Design 92, 1845 (2014).CrossRefGoogle Scholar
  6. 6.
    E. U. Franck, Angewandte Chemie 73, 309 (1961).CrossRefGoogle Scholar
  7. 7.
    E. U. Franck, Berichte der Bunsengesellschaft für physikalische Chemie 88, 820 (1984).CrossRefGoogle Scholar
  8. 8.
    E. U. Franck, The Journal of Chemical Thermodynamics 19, 225 (1987).CrossRefGoogle Scholar
  9. 9.
    R. W. Shaw, T. B. Brill, A. A. Clifford, C. A. Eckert and E. U. Franck, Chemical and Engineering News 69, 26 (1991).Google Scholar
  10. 10.
    E.U. Franck, Supercritical water and other fluids—a historical perspective, in Supercritical Fluids—Fundamentals and Applications, NATO Science Series E, eds. E. Kiran, P. G. Debenedetti and C. J. Peters, (Kluwer Publishers, Dodrecht, 2000), p. 307.Google Scholar
  11. 11.
    T. Tassaing, Y. Danten and M. Besnard, Journal of Molecular Liquids 101, 149 (2002).CrossRefGoogle Scholar
  12. 12.
    A.A. Peterson, F. Vogel, R. P. Lachance, M. Froling, M. J. Antal, Jr., and J. W. Tester, Energy and Environmental Science 1, 2008 (32).Google Scholar
  13. 13.
    J. G. Speight, The Chemistry and Technology of Petroleum, (Marcel Dekker Inc, New York, 1991).Google Scholar
  14. 14.
    A. A. Triggia, C. A. Correia, C. V. Filho, J. A. D. Xavier, J. C. V. Machado, J. E. Thomas, J. E. S. Filho, J. L. Paula, N. C. M. Rossi, N. E. S. Pitombo, P. C. V. M. Gouveia, R. S. Carvalho and R. V. Barragan, Fundamentos de Engenharia de Petróleo, (Interciência, Rio de Janeiro, 2001). (In Portuguese).Google Scholar
  15. 15.
    M. A. Ali and W. A. Nofal, Fuel Science and Technology International 12, 21 (1994).CrossRefGoogle Scholar
  16. 16.
    E. Lundanes and T. Greibrock, Journal of High Resolution Chromatography 17, 202 (1994).CrossRefGoogle Scholar
  17. 17.
    R. G. Santos, W. Loh, A. C. Bannwart and O. V. Trevisan, Brazilian Journal of Chemical Engineering 31, 571 (2014).CrossRefGoogle Scholar
  18. 18.
    P. Gateau, I. Hénaut, L. Barré and J. F. Argillier, Oil and Gas Science and Technology 59, 503 (2000).CrossRefGoogle Scholar
  19. 19.
    C. Xu and J. Donald, Journal of Fuel 102, 16 (2012).CrossRefGoogle Scholar
  20. 20.
    C. Xu and T. Etcheverry, Fuel 87, 335 (2008).CrossRefGoogle Scholar
  21. 21.
    C. Xu, S. Hamilton, A. Mallik and M. Ghosh, Energy and Fuels 21, 3490 (2007).CrossRefGoogle Scholar
  22. 22.
    M. R. Gray, Upgrading Petroleum Residues and Heavy Oils, (Marcel Dekker Inc, New York, 1994).CrossRefGoogle Scholar
  23. 23.
    J. Ancheyta, Modeling and Simulation of Catalytic Reactors for Petroleum Refining, 2nd ed, (Wiley, Hoboken, 2011).CrossRefGoogle Scholar
  24. 24.
    M. Morimoto, Y. Sugimoto, S. Sato and T. Takanohashi, Energy and Fuels 28, 858 (2014).CrossRefGoogle Scholar
  25. 25.
    S. Rudyk and P. Spirov, Applied Energy 113, 1397 (2014).CrossRefGoogle Scholar
  26. 26.
    O. N. Fedyaeva, A. A. Vostrikov, M. Y. Sokol and N. I. Fedorova, Russian Journal of Physical Chemistry B 7, 820 (2013).CrossRefGoogle Scholar
  27. 27.
    P. R. Patwardhan, M. T. Timko, C. A. Class, R. E. Bonomi, Y. Kida, H. H. Hernandez, J. W. Tester and W. H. Green, Energy and Fuels 27, 6108 (2013).CrossRefGoogle Scholar
  28. 28.
    T. Sato, T. Tomita, P. H. Trung, N. Itoh, S. Sato and T. Takanohashi, Energy and Fuels 27, 646 (2013).CrossRefGoogle Scholar
  29. 29.
    J. Vilcaez, M. Watanabe, N. Watanabe, A. Kishita and T. Adschiri, Fuel 102, 379 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Morimoto, Y. Sugimoto, Y. Saotome, S. Sato and T. Takanohashi, Journal of Supercritical Fluids 55, 223 (2010).CrossRefGoogle Scholar
  31. 31.
    M. Watanabe, S. Kato, S. Ishizeki, H. Inomata and R. L. Smith, Journal of Supercritical Fluids 53, 48 (2010).CrossRefGoogle Scholar
  32. 32.
    A. Kishita, S. Takahashi, H. Kamimura, M. Miki, T. Moriya and H. Enomoto, Journal of the Japan Petroleum Institute 46, 215 (2003).CrossRefGoogle Scholar
  33. 33.
    A. Kishita, S. Takahashi, H. Kamimura, M. Miki, T. Moriya and H. Enomoto, Journal of the Japan Petroleum Institute 45, 361 (2002).CrossRefGoogle Scholar
  34. 34.
    T. Adschiri, R. Shibata, T. Sato, M. Watanabe and K. Arai, Industrial and Engineering Chemistry Research 37, 2634 (1998).CrossRefGoogle Scholar
  35. 35.
    O. M. Ogunsola and N. Berkowitz, Fuel 74, 1485 (1995).CrossRefGoogle Scholar
  36. 36.
    W. Bishop, LC-finer operating experience at Syncrude. Proceedings of Symposium on Heavy Oil: Upgrading to Refining, CSChE, Calgary, Alberta, Canada (2007), p. 14.Google Scholar
  37. 37.
    G. B. Brons, M. Siskin, and K. O. Wrzeszczynski, Upgrading of bitumen asphaltenes by hot water treatment, U.S. Patent 5 (1994), p. 316.Google Scholar
  38. 38.
    P. D. Clark and M. J. Kirk, Energy and Fuels 8, 380 (1994).CrossRefGoogle Scholar
  39. 39.
    G. Gupta, P. Ampornrat, X. Ren, K. Sridharan, T. R. Allen and G. S. Was, Journal of Nuclear Materials 361, 160 (2007).CrossRefGoogle Scholar
  40. 40.
    T. Hirose, K. Shiba, M. Enoeda and M. Akiba, Journal of Nuclear Materials 367–370, 1185 (2007).CrossRefGoogle Scholar
  41. 41.
    P. A. Marrone, G. T. Hong and M. H. Spritzer, Journal of Advanced Oxidation Technologies 10, 157 (2007).Google Scholar
  42. 42.
    E. Dinjus and A. Kruse, Journal of Physics: Condensed Matter 16, S1161 (2004).Google Scholar
  43. 43.
    P. A. Marrone, S. D. Cantwell and D. W. Dalton, Industrial and Engineering Chemistry Research 44, 9030 (2005).CrossRefGoogle Scholar
  44. 44.
    M. Hodes, P. A. Marrone, G. T. Hong, K. A. Smith and J. W. Tester, The Journal of Supercritical Fluids 29, 265 (2004).CrossRefGoogle Scholar
  45. 45.
    P. A. Marrone, M. Hodes, K. A. Smith and J. W. Tester, The Journal of Supercritical Fluids 29, 289 (2004).CrossRefGoogle Scholar
  46. 46.
    P. A. Marrone and G. T. Hong, The Journal of Supercritical Fluids 51, 83 (2009).CrossRefGoogle Scholar
  47. 47.
    D. B. Mitton, P. A. Marrone and R. M. Latanision, Journal of the Electrochemical Society 143, L59 (1996).CrossRefGoogle Scholar
  48. 48.
    L. Zhang, Frontiers of Energy and Power Engineering in China 3, 233 (2009).CrossRefGoogle Scholar
  49. 49.
    M. Halvarsson, J. E. Tang and H. Asteman, Corrosion Science 48, 2014 (2006).CrossRefGoogle Scholar
  50. 50.
    E. J. Opila, Materials Science Forum 461–464, 765 (2004).CrossRefGoogle Scholar
  51. 51.
    L. B. Kriksunov and D. D. Macdonald, Journal of the Electrochemical Society 142, 4069 (1995).CrossRefGoogle Scholar
  52. 52.
    R. M. Latanision, Corrosion 51, 270 (1995).CrossRefGoogle Scholar
  53. 53.
    P. Kritzer, The Journal of Supercritical Fluids 29, 1 (2004).CrossRefGoogle Scholar
  54. 54.
    D. B. Mitton, N. Eliaz, J. A. Cline and R. M. Latanision, Materials Technology: Advanced Performance Materials 16, 44 (2001).CrossRefGoogle Scholar
  55. 55.
    P. Kritzer, N. Boukis and E. Dinjus, The Journal of Supercritical Fluids 15, 205 (1999).CrossRefGoogle Scholar
  56. 56.
    P. A. Marrone and G. T. Hong, Supercritical water oxidation. in Environmentally Conscious Materials and Chemical Processing, ed. M. Kutz (John Wiley & Sons Inc., Hoboken, New Jersey, 2007), p. 385.CrossRefGoogle Scholar
  57. 57.
    M. D. Bermejo and M. J. Cocero, AIChE Journal 52, 3933 (2006).CrossRefGoogle Scholar
  58. 58.
    P. Kritzer and E. Dinjus, Chemical Engineering Journal 83, 207 (2001).CrossRefGoogle Scholar
  59. 59.
    R. W. Shaw and N. Dahmen, Destruction of toxic organic materials using supercritical water oxidation: current state of the technology. in Supercritical Fluids—Fundamentals and Applications, eds. E. Kiran, P. G. Debenedetti and C. J. Peters (Kluwer-Academic, Dordrecht, 2000), p. 425.Google Scholar
  60. 60.
    H. Schmieder and J. Abeln, Chemical Engineering and Technology 22, 903 (1999).CrossRefGoogle Scholar
  61. 61.
    E. F. Gloyna and L. Li, Waste treatment by supercritical water oxidation, in Encyclopedia of Chemical Processing and Design, Marcel Dekker, New York (1998), p. 272.Google Scholar
  62. 62.
    J. W. Tester, H. R. Holgate, F. J. Armellini, P. A. Webley, W. R. Killilea, G. T. Hong and H. E. Barner, Supercritical water oxidation technology. in Emerging Technologies in Hazardous Waste Management III, ACS Symposium Series, vol. 518, American Chemical Societyeds. D. W. Tedder and F. G. Pohland (Washington, DC, 1993), p. 35.CrossRefGoogle Scholar
  63. 63.
    P. Kritzer, Die Korrosion der Nickel-Basis-Legierung 625 unter hydrothermalen Bedingungen, Report FZKA 6168, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany, (1998), p. 180.Google Scholar
  64. 64.
    B. P. Somerday, K. T. Wiggans and R. W. Bradshaw, Engineering Failure Analysis 13, 80 (2006).CrossRefGoogle Scholar
  65. 65.
    D. B. Mitton, J. H. Yoon, J. A. Cline, H. S. Kim, N. Eliaz and R. M. Latanision, Industrial and Engineering Chemistry Research 39, 4689 (2000).CrossRefGoogle Scholar
  66. 66.
    H. Kim, An Investigation of Corrosion Mechanism of Constructural Alloys in Supercritical Water Oxidation System, thesis (2000).Google Scholar
  67. 67.
    V. A. Zilberstein, J. A. Bettinger, D. W. Ordway, and G. T. Hong, Evaluation of Materials Performance in a Supercritical Wet Oxidation System, CORROSION, Paper No. 558, NACE, Houston, TX (1995).Google Scholar
  68. 68.
    P. Kritzer, N. Boukis and E. Dinjus, Corrosion 54, 824 (1998).CrossRefGoogle Scholar
  69. 69.
    J. R. Park and Z. Szklarska-Smialowska, Corrosion 41, 665 (1985).CrossRefGoogle Scholar
  70. 70.
    P. Kritzer, N. Boukis and E. Dinjus, Corrosion 54, 689 (1998).CrossRefGoogle Scholar
  71. 71.
    L. U. Jian-shu, M. Zhi-yuan, Z. Jiu-yuan, M. A. Chun-an, M. Xin-biao and L. I. Xiaohua, Transactions of Nonferrous Metals Society of China 12, 1054 (2002).Google Scholar
  72. 72.
    R. B. Rebak, Environmentally assisted cracking of nickel alloys—a review, in Proceedings of the Second International Conference on Environment- Induced Cracking of Metals (EICM-2), Banff, Alberta, Canada (2004). www.llnl.gov/tid/lof/documents/pdf/309473.pdf.
  73. 73.
    P. Kritzer, N. Boukis and E. Dinjus, Journal of Materials Science Letters 18, 771 (1999).CrossRefGoogle Scholar
  74. 74.
    A. Stein, C. Felch, and E .F. Doyle, Material Selection for Hydrothermal Oxidation Processes for the Disposal of Chemical Demilitarization Hazardous Waste, Corrosion, Paper No. 06455, NACE, Houston, TX (2006).Google Scholar
  75. 75.
    J. H. Yoon, K. S. Son, H. S. Kim, B. Mitton, R. Latanision, Y. R. Yoo and Y. S. Kim, Materials Science 475–479, 4207 (2005).Google Scholar
  76. 76.
    V. P. Kochergin and M. S. Ulanova, Russian Journal of Inorganic Chemistry 14, 1337 (1969).Google Scholar
  77. 77.
    E. F. Gloyna and L. Li, Supercritical Water Oxidation Model Development for Selected EPA Priority Pollutants. U.S. Environmental Protection Agency Report No. EPA/600/SR-95/080 (1995).Google Scholar
  78. 78.
    M. Modell, Design of suspension flow reactors for SCWO, in Proceedings of Second International Conference on Solvothermal Reactions, Takamatsu, Japan (1996).Google Scholar
  79. 79.
    S. Baur, H. Schmidt, A. Kramer and J. Gerber, The Journal of Supercritical Fluids 33, 149 (2005).CrossRefGoogle Scholar
  80. 80.
    Stone & Webster Engineering Corp., Supercritical water oxidation data acquisition testing, Contract No. DE-FC07-94ID13303, Final Report, Vol. 1, (1996). www.osti.gov/bridge/servlets/purl/477764-hJAklF/webviewable/477764.PDF.
  81. 81.
    C. Shapiro, K. Garcia, and J. Beller, Treatment of a simulated mixed waste with supercritical water oxidation, in Proceedings of the Second International Symposium on Mixed Waste, Baltimore, MD (1993).Google Scholar
  82. 82.
    S. A. Wood and L. L. Baker, Experimental study of metal corrosion in supercritical brines: application to supercritical water oxidation of hazardous wastes. U.S. Army Research Office Grant No. DAAH04-96-1-0395, Final Report (2000).Google Scholar
  83. 83.
    M. Hossain, T. Kitaguchi and Y. Sato, Heavy oil upgrading in supercritical water using iron based catalyst, in 20th Annual Saudi-Japan Symposium.Google Scholar
  84. 84.
    P. Duan and P. E. Savage, Journal of Bioresource Technology 102, 1899 (2011).CrossRefGoogle Scholar
  85. 85.
    Y. Nakazono, T. Iwai and H. Abe, Journal of Physics: Conference Series 215, 012094 (2010).Google Scholar
  86. 86.
    G. S. Was, P. Ampornrat, G. Gupta, S. Teyssseyre, E. A. West, T. R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren and C. Pister, Journal of Nuclear Materials 371, 176 (2007).CrossRefGoogle Scholar
  87. 87.
    D. J. Larson, P. J. Maziasz, I. S. Kim and K. Miyahara, Scripta Materialia 44, 359 (2001).CrossRefGoogle Scholar
  88. 88.
    M. K. Miller, D. T. Hoelzer, E. A. Kenik and K. F. Russell, Intermetallics 13, 387 (2005).CrossRefGoogle Scholar
  89. 89.
    I. S. Kim, J. D. Hunn, N. Hashimoto, D. L. Larson, P. J. Maziasz, K. Miyahara and E. H. Lee, Journal of Nuclear Materials 280, 264 (2000).CrossRefGoogle Scholar
  90. 90.
    Y. Chen, K. Sridharan, T. R. Allen and S. Ukai, Journal of Nuclear Materials 359, 50 (2006).CrossRefGoogle Scholar
  91. 91.
    T. Watanabe, T. Murakami and S. Karashima, Scripta Materialia 12, 361 (1978).CrossRefGoogle Scholar
  92. 92.
    S. M. Bruemmer and G. S. Was, Journal of Nuclear Materials 216, 348 (1994).CrossRefGoogle Scholar
  93. 93.
    R. L. Klueh, International Materials Reviews 50, 287 (2005).CrossRefGoogle Scholar
  94. 94.
    G. Gupta and G. S. Was, Metallurgical and Materials Transactions A 39, 150 (2008).CrossRefGoogle Scholar
  95. 95.
    R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, (ASTM International Publisher, West Conshohocken, 2001).CrossRefGoogle Scholar
  96. 96.
    T. R. Allen, Y. Chen, L. Tan, X. Ren, K. Sridharan, Corrosion of candidate materials for supercritical water-cooled reactors, in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, eds. T. R. Allen, P. J. King, and L. Nelson, (The Minerals, Metals & Materials Society, 2005).Google Scholar
  97. 97.
    L. Tan, X. Ren and T. R. Allen, Corrosion Science 52, 1520 (2010).CrossRefGoogle Scholar
  98. 98.
    K. L. Murty and I. Charit, Journal of Nuclear Materials 383, 189 (2008).CrossRefGoogle Scholar
  99. 99.
    B. Alexandreanu, B. H. Sencer, V. Thaveeprungsriporn and G. S. Was, Acta Materialia 51, 3831 (2003).CrossRefGoogle Scholar
  100. 100.
    Y. Lia, S. Wanga, P. Suna, D. Xua, M. Rena, Y. Guoab and G. Lin, Corrosion Science 128, 241 (2017).CrossRefGoogle Scholar
  101. 101.
    Y. Chen, K. Sridharan, and T. R. Allen, Corrosion of Candidate Austenitic Stainless Steels for Supercritical Water Reactors, NACE Corrosion, Paper No. 07408 (2007).Google Scholar
  102. 102.
    J. H. Lee, Advanced Materials Research 748, 86 (2013).CrossRefGoogle Scholar
  103. 103.
    S. F. Li, Z. J. Zhou, L. F. Zhang, L. W. Zhang, H. L. Hu, M. Wang and G. M. Zhang, Materials and Corrosion 67, 264 (2016).CrossRefGoogle Scholar
  104. 104.
    X. Tang, Industrial and Engineering Chemistry Research 52, 18241 (2013).CrossRefGoogle Scholar
  105. 105.
    T. R. Allen, L. Tan, G. S. Was and E. A. Kenik, Journal of Nuclear Materials. 361, 174 (2007).CrossRefGoogle Scholar
  106. 106.
    F. Tancret, T. Sourmail, M. A. Yescas, R. W. Evans, C. McAleese, L. Singh, T. Smeeton and H. K. D. H. Bhadeshia, Materials Science and Technology 19, 296 (2003).CrossRefGoogle Scholar
  107. 107.
    E. M. Lehockey, A. M. Brennenstuhl and I. Thomposon, Corrosion Science 46, 2383 (2004).CrossRefGoogle Scholar
  108. 108.
    J. Kaneda, S. Kashara, J. Kuniya, K. Moriya, F. Kano, N. Saito, A. Shioiri, T. Shibayama, and H. Takahashi, General corrosion properties of titanium based alloys for the fuel claddings in the supercritical water-cooled reactor, in Proceeding of 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems –Water Reactors, (The Minerals, Materials and Metals Society, Warrendale, PA, 2005), p. 1409.Google Scholar
  109. 109.
    K. Ehrlich, J. Konys and L. Heikinheimo, Journal of Nuclear Materials 327, 140 (2004).CrossRefGoogle Scholar
  110. 110.
    N. Boukis, N. Claussen, K. Ebert, R. Janssen and M. Schacht, Journal of the European Ceramic Society 17, 71 (1997).CrossRefGoogle Scholar
  111. 111.
    E. Proverbio and F. Carassiti, Journal of the European Ceramic Society 16, 1121 (1996).CrossRefGoogle Scholar
  112. 112.
    N. Hara and K. Sugimoto, Materia Japan 39, 325 (2000).CrossRefGoogle Scholar
  113. 113.
    M. Schacht, N. Boukis, E. Dinjus, K. Ebert, R. Janssen, F. Meschke and N. Claussen, Journal of the European Ceramic Society 18, 237 (1998).CrossRefGoogle Scholar
  114. 114.
    A. T. Motta, A. Yilmazbayhan, M. J. Gomes da Silva, R. J. Comstock, G. S. Was, J. T. Busby, E. Gartner, Q. J. Peng, Y. H. Jeong and J. Y. Park, Journal of Nuclear Materials 371, 61 (2007).CrossRefGoogle Scholar
  115. 115.
    F. Rouillard and T. Furukawa, Corrosion Science 105, 120 (2016).CrossRefGoogle Scholar
  116. 116.
    B. A. Pint and J. R. Keiser, The Minerals, Metals and Materials Society 67, 11 (2015).Google Scholar
  117. 117.
    M. Payeta, L. Marchettib, M. Tabarantc and J. P. Chevalier, Corrosion Science 100, 47 (2015).CrossRefGoogle Scholar
  118. 118.
    X. Tang, S. Wang, L. Qian, Y. Li, Z. Lin, D. Xu and Y. Zhang, Chemical Engineering Research and Design 100, 530 (2015).CrossRefGoogle Scholar
  119. 119.
    R. I. Olivares, D. J. Young, P. Marvig and W. Stein, Oxidation of Metals 84, 585 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.Center of Research Excellence in CorrosionKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  3. 3.Center for Engineering ResearchKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia

Personalised recommendations